| Solar System Data | | | | | | | | | | |----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | Quantity | Sun | Mercury | Venus | Earth | Mars | Jupiter | Saturn | Uranus | Neptune | | Distance
from Sun | N/A | 5.8×10^{10} | 1.1×10^{11} | 1.5×10^{11} | 2.3×10^{11} | 7.8×10^{11} | 1.4×10^{12} | 2.9×10^{12} | 4.5×10^{12} | | Radius | 7.0×10^{8} | 2.5×10^{6} | 6.1×10^{6} | 6.4×10^{6} | 3.4×10^{6} | 7.1×10^{7} | 6.0×10^{7} | 2.6×10^{7} | 2.5×10^{7} | | Mass | 2.0×10^{30} | 3.3×10^{23} | 4.9×10^{24} | 6.0×10^{24} | 6.4×10^{23} | 2.0×10^{27} | 5.7×10^{26} | 8.7×10^{25} | 1.0×10^{26} | | Revolution | N/A | 88d | 225d | 365d | 1.88y | 11.9y | 29y | 84y | 164y | | Rotation | Varies | 58d | 243d | 24h | 24h | 10h | 11h | 17h | 16h | # **Fundamental Physical Constants** | Quantity | Symbol | Accepted value | |--|---|--| | speed of light in a vacuum gravitational constant Coulomb's constant charge on an electron rest mass of an electron rest mass of a proton rest mass of a neutron Planck's constant | c G k e $m_{\rm e}$ $m_{\rm p}$ $m_{\rm n}$ h | $\begin{array}{c} 2.998 \times 10^8 \text{ m/s} \\ 6.673 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2 \\ 8.988 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2 \\ 1.602 \times 10^{-19} \text{ C} \\ 9.109 \times 10^{-31} \text{ kg} \\ 1.673 \times 10^{-27} \text{ kg} \\ 1.675 \times 10^{-27} \text{ kg} \\ 6.626 \times 10^{-34} \text{ J} \cdot \text{s} \end{array}$ | #### Investigate Choose a number between 1 and 10 as the base of a power. Use the exponents 5, 4, 3, 2, and 1. Use your base and each exponent to write a power. Then write the power as repeated multiplication and in standard form. Record your results in a table. | Exponent | Power | Repeated
Multiplication | Standard
Form | |----------|-------|----------------------------|------------------| | 5 | 5, | 545×5×5×5 | 3125 | | 4 | 54 | 5 45 45 45 | 625 | | 3 | 5 2 | 5x5x5 | 125 | | 2 | 5 . | 5×5 | 25 | | 1 | 51 | 5 | 5 | | 0 | 5° | | | Describe any patterns in your table. Continue the patterns to complete the entries in the last row. ## Connect This table shows decreasing powers of 10. | Number in Words | Standard Form | Power | |----------------------|---------------|-----------------| | One billion | 1 000 000 000 | 10 ⁹ | | One hundred million | 100 000 000 | 10 ⁸ | | Ten million | 10 000 000 | 10 ⁷ | | One million | 1 000 000 | 10 ⁶ | | One hundred thousand | 100 000 | 10 ⁵ | | Ten thousand | 10 000 | 10 ⁴ | | One thousand | 1 000 | 10 ³ | | One hundred | 100 | 10 ² | | Ten | 10 | 10 ¹ | | One | 1 | 10 ⁰ | #### Zero Exponent Law A power with an integer base, other than 0, and an exponent 0 is equal to 1. $n^0 = 1, n \neq 0$ # **Example 1** Evaluating Powers with Exponent Zero Evaluate each expression. a) $$4^0$$ b) $$-4^{0}$$ c) $$(-4)^0$$ ## ► A Solution A power with exponent 0 is equal to 1. a) $$4^0 = 1$$ b) $$-4^0 = -1$$ c) $$(-4)^0 = 1$$ We can use the zero exponent and powers of 10 to write a number. ## **Example 2** Writing Numbers Using Powers of Ten Write 3452 using powers of 10. ## A Solution Use a place-value chart. | Thousands | Hundreds | Tens | Ones | | |-----------|----------|------|------|--| | 3 | 4 | 5 | 2 | | $$3452 = 3000 + 400 + 50 + 2$$ = $(3 \times 1000) + (4 \times 100) + (5 \times 10) + (2 \times 1)$ We use brackets for clarity. = $(3 \times 10^3) + (4 \times 10^2) + (5 \times 10^1) + (2 \times 10^0)$