Guided Displacement and Velocity Problems

Note how we approach physics problems using the handbook

2 a) Calculate the average velocity, in m/s, of Venus the instant it has traveled half of its circular orbit around the Sun.

Sketch a diagram _____ *Determine quantities needed*

Create a coordinate system

$$\vec{v}_{avg} = \frac{\vec{d}}{t}$$
 required

Use learned & prior knowledge

 \vec{d} = change in position

 \bar{d} = diameter of circle

t = time to change position

 $t = \frac{1}{2}$ a Venus year (seconds)

Obtain values from handbook

Venus distance from Sun, the radius = 108 million km, so diameter is 216 million km. 2.2×10^{11} m [N] $\leftarrow 3$

$$\vec{d} = 216 \times 10^{8} \text{ km}[N] \times \frac{10^{3} \text{ m/km}}{\vec{d}} = 216 \times 10^{9} \text{ m}[N]$$

 $t = \frac{1}{2} \times 225 \text{ days } \times 24 \text{ h/day } \times 60 \text{ min/h } \times 60 \text{ s/min}$

$$t = 9.72 \times 10^6 \text{ s}$$

Complete Problem

$$\vec{v}_{avg} = \frac{\vec{d}}{t} 2.2 \times 10^{"} \text{ N}$$

$$\vec{v}_{avg} = \frac{216 \times 10^{9} \text{ m} \text{ N}}{9.72 \times 10^{6} \text{ s}}$$

$$\vec{v}_{avg}$$
 = 2.22 x 10⁴ m/s [N]

Guided Displacement and Velocity Problems

Note how we approach physics problems using the handbook

2 b) Calculate the average speed, in m/s, of Venus the instant it has traveled half of its circular orbit around the Sun.

Sketch a diagram _____ *Determine quantities needed*

$$v_{sp} = \frac{d}{t} > \text{required}$$
 $d = ? \quad t = ?$

Use learned & prior knowledge

d = length of path

 $d = \frac{1}{2}$ circumference of circle

t = time to travel distance

 $t = \frac{1}{2}$ a Venus year (seconds)

 $t = \frac{1}{2} \times 225 \text{ days } \times 24 \text{ h/day } \times 60 \text{ min/h } \times 60 \text{ s/min}$

$$t = 9.72 \times 10^6 \text{ s}$$

