ELEMENTS AND **COMPOUNDS**

CHEMICAL NAMES AND FORMULAS

LEARNING TARGET

 Identify, name and write formulas for ionic (binary, multivalent, polyatomic, and hydrates) and molecular compounds, and acids using the IUPAC and classical systems.

ATOMS AND IONS

• <u>Atoms</u> are electrically neutral.

-Because there is the same number of protons (+) and electrons (-).

- <u>lons</u> are atoms, or groups of atoms, with a charge (positive or negative)
 - -They have *different* numbers of protons and electrons.
- Only electrons can move, and **ions** are made by gaining or losing electrons.

AN ANION IS...

- A negative ion.
- Has gained electrons.
- Nonmetals can gain electrons.
- Charge is written as a superscript on the right.

- F¹- Has gained one electron (-ide is new ending = fluoride)
- O²⁻ Gained two electrons (oxide)

A Cation is...

- A positive ion.
- Formed by losing electrons.
- More protons than electrons.
- Metals can lose electrons
 - K^{1+} Has lost one electron (no name change for positive ions) Ca^{2+} Has lost two electrons

<u>Group 1A</u>: Lose 1 electron to form 1+ ions

Hit Litt Nait Kit Rbit

1 H 1.00794																	He 4.002602
Li	4 Be											B	ĉ	Ň	Ő	° F	Ne
6.941	9.012182											10.811	12.0107	14.00674	15.9994	18.9984032	20.1797
11 Mo	12 M o											13	14	D B	16	17	18
Na 22.989770	Mg 24.3050											Al 26.981538	Si 28.0855	P 30.973761	32.066	35.4527	Ar 39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Са	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.955910	47.867	50.9415		54.938049	55.845	58.933200		63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37 Db	38	39 V	40	41 NTh	42	43 To	44 D	45 D h	46 D-1	47	48	49 Ta	50	51 Cla	52 Tra	53 T	54 V a
Rb 85.4678	Sr 87.62	Y 88.90585	Zr 91.224	Nb 92.90638	Mo 95.94	Tc (98)	Ru 101.07	Rh	Pd 106.42	Ag 107.8682	Cd 112.411	In 114.818	Sn 118.710	Sb 121.760	Te 127.60	1	Xe 131.29
55	56	aa.905a5 57	72	52.5063a 73	53.94	(58)	76	102.90550 77	78	79	80	81	82	83	84	126.90447 85	86
Ĉs	Ba	La	Ĥf	Ta	Ŵ	Re	Ös	Ir	Pt	Au	Нg	ΤÎ	Pb	Bi	Po	Āt	Rn
132.90545		138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.96655	200.59	204.3833	207.2	208.98038	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt					(289)				
(223)	(226)	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(269)	(272)	(277)		(287)		(289)		

<u>Group 2A</u>: Loses 2 electrons to form 2+ ions

			FD	₽ ²⁺	Ŋ] 2	÷	CE	<u>2</u> +	SI	<u>-2</u> +	F	3 2+	,			
1 H 1.00794	V																He 4.002602
	4 Be 9.012182											B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	CO 58.933200	28 Ni 58.6934	²⁹ Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 187.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

B³⁺ A]³⁺ Gzl³⁺

<u>Group 3A</u>: Loses 3 electrons to form 3+ ions

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga @.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 197.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186,207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		(289)		

Neither! Group 4A elements rarely form iONS (they tend to share)

<u>Group 4A</u>: Do they lose 4 electrons or gain 4 electrons?

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	С 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	²⁹ Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	(277)		114 (289) (287)		116 (289)		

- N³- Nitride
- P³⁻ Phosphide

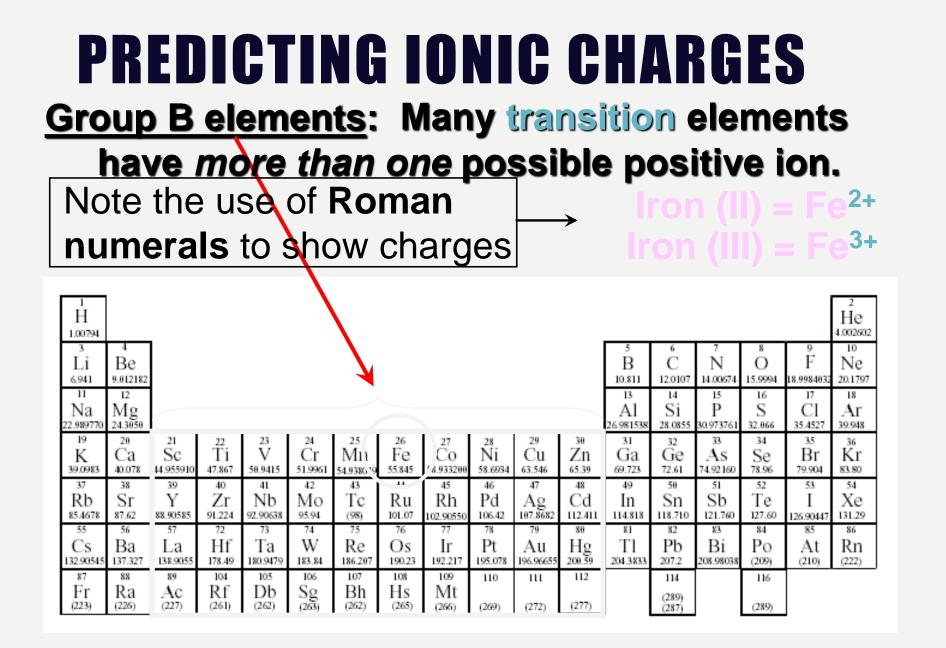
As³- Arsenide

<u>Group 5A</u>: Gains 3 electrons to form 3- ions

1 H 1.00794		_															He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.866	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	22 Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

- O²- Oxide
- S²⁻ Sulfide
- Se² Selenide

<u>Group 6A</u>: Gains 2 electrons to form 2- ions


1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.866	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	зі Ga @.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.297	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

F1- FluorideBr1- BromideCJ1- ChlorideJ1- Iodide

Group 7A: Gains 1 electron to form 1- ions

1 H 1.00794																	He 4.002602
3 Li 6.941	4 Be 9.912182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	F 18.998403	10 Ne 20.1797
11 Na 22.989770	Mg											13 Al 26.981538	si	15 P 30.973761	16 S	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	29 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	зі Ga @.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 CS 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		,

PREDICTING IONIC CHARGES Group 8A: Stable noble gases do not form ions! 2 Н He 4.002602 1.0079410 F Li C N Ne Be в Ο 6.941 9.012182 10.811 12.0107 14.00674 15.9994 20.1797 8.998403 11 12 13 14 15 17 18 16 Mg 24.3050 Na Al Si Р S ClAr 22.9897726.981538 30.973761 32.066 35.4527 39.948 28.0855 19 20 33 34 35 36 21 23 24 25 26 27 29 30 31 32 22 28 Ťi Mn Fe Ñi Sc V Cr Zn Kr Co Cu Ga As Br Κ Ca Ge Se 39.0983 40.078 44.955910 47.867 58.9415 51.9961 54.93804 55.845 58.933200 58.6934 63.546 65.39 69.72372.6174.92160 78.96 79.904 83.80 54 37 42 43 44 47 48 49 50 51 52 53 38 39 40 41 45 46 Ag 107.8682 Xe Rb Sr Υ Zr Nb Mo Tc Ru Rh Pd Cd SbTe In Sn 85.4678 87.62 88.90585 91.224 92.90638 95.94 101.07 106.42 112.411 114.818 118.710 121.760 127.60 131.29 (98)02.90550 126.90447 -55 86 56 -57 72 73 74 75 76 77 7880 81 82 83 84 85 79Hf W Hg 200.59 T1Bi Rn Cs Ba La Та Re Os Ir Pt Pb Po At Au 132.9054 137.327 138,9055 178.49180.9479 183.84 186.207 190.23 192.217 195.078 196.9665 204.3833 207.2 208.9803 (209)(210)(222) 87 88 89 104 105 106 107108109 112 111 114 116 110 Fr Rf Db Sg (263) Bh Ra Ac Hs Mt (289)(223)(226)(227)(261)(262)(262)(265)(266)(269)(272)(277)(289)(287)

NAMING CATIONS

- <u>Two methods</u> can clarify when more than one charge is possible:
 - I) <u>Stock system</u> uses roman numerals in parenthesis to indicate the numerical value
 - 2) <u>Classical method</u> uses root word with *suffixes* (-ous, -ic)
 - Does not give true value

NAMING CATIONS

- We will use the **<u>Stock system</u>**.
- Cation if the charge is always the same (like in the Group A metals) just write the name of the metal.
- Transition metals can have more than one type of charge.
 - -Indicate their charge as a **roman numeral** in parenthesis after the name of the metal (Table 9.2, p.255)

Some of the post-transitionelements alsohave more than one possible ionic charge.Tin (II) = Sn²⁺Lead (II) = Pb²⁺Tin (IV) = Sn⁴⁺Lead (IV) = Pb⁴⁺

1 H 1.00794		_															He 4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050											13 Al 66.981538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	²⁵ Mn 54.938049	26 Fe 55.845	CO 58.933200	28 Ni 58.6934	²⁹ Cu _{63.546}	30 Zn 65.39	31 0.7 69.72	32 Ge (2.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.815	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 CS 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	(277)		114 (289) (287)		116 (289)		

<u>Group B elements</u>: Some transition elements have <u>only one</u> possible ionic charge, such as these three:

			Ag	1+					Zn	2+							d ²⁺
1 H 1.00794																	4.002602
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797
11 Na 22.989770	12 Mg 24.3050					4						13 Al 26.981538	14 Si 28.0855	15 P 30.973761		17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415		25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	Cu	Zn	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	Br 79.904	83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	E Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	Au 196.96655	en Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)		

EXCEPTIONS:

- Some of the transition metals have <u>only one</u> ionic charge:
 - -Do not need to use roman numerals for these:
 - -<u>Silver</u> is always I+ (Ag^{I+})
 - -<u>Cadmium</u> and <u>Zinc</u> are **always** 2+ (**Cd**²⁺ and **Zn**²⁺)

PRACTICE BY NAMING THESE:

- •Na^{I+}
- Ca²⁺
- **A**|³⁺
- **Fe**³⁺
- **Fe**²⁺
- **Pb**²⁺
- Li¹⁺

WRITE SYMBOLS FOR THESE:

- Potassium ion
- Magnesium ion
- •Copper (II) ion
- Chromium (VI) ion
- Barium ion
- •Mercury (II) ion

NAMING ANIONS

- Anions are <u>always</u> the same charge
 Change the monatomic element ending to – ide
- •**F**^{I-} a Fluor<u>ine</u> atom will become a Fluor<u>ide</u> ion.

PRACTICE BY NAMING THESE:

- •CI¹⁻
- N³⁻
- •Br^{I-}
- O²⁻
- •Ga³⁺

WRITE SYMBOLS FOR THESE:

- •Sulfide ion
- lodide ion
- Phosphide ion
- •Strontium ion

POLYATOMIC IONS ARE...

- Groups of atoms that stay together and have an overall charge, and one name.
- Usually end in -ate or -ite
- Acet<u>ate</u>: C₂H₃O₂^I-
- Nitr<u>ate</u>: NO₃^I-
- Nitr<u>ite</u>: NO₂^I-
- Permangan<u>ate</u>: MnO₄¹-
- Hydroxide: **OH**^{I-} and Cyanide: **CN**^{I-}

Table 9.3 on page 257

- Sulf<u>ate</u>: **SO**₄²⁻
- Sulf<u>ite</u>: **SO**₃²⁻
- Carbon<u>ate</u>: **CO**₃²⁻
- Chrom<u>ate</u>: **CrO₄²⁻**
- Dichrom<u>ate</u>: **Cr₂O₇²⁻**

- Phosph<u>ate</u>: **PO₄³⁻**
- Phosph<u>ite</u>: **PO₃³⁻**
- Ammonium: **NH**⁴ (One of the few positive polyatomic ions)

If the polyatomic ion begins with H, then combine the word hydrogen with the other polyatomic ion present: $H^{1+} + CO_3^{2-} \rightarrow HCO_3^{1-}$ hydrogen + carbonate \rightarrow hydrogen carbonate ion

REVIEW QUESTIONS

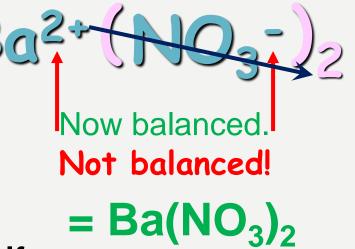
- Page 258
 - -#s 3 9.
 - -Guided Reading Sheet

NAMING AND WRITING FORMULAS FOR IONIC COMPOUNDS

- <u>OBJECTIVES:</u>
 - -<u>Apply the rules</u> for naming and writing formulas for <u>binary</u> ionic compounds.

NAMING AND WRITING FORMULAS FOR IONIC COMPOUNDS

• **OBJECTIVES**:


-<u>Apply the rules</u> for naming and writing formulas for compounds containing <u>polyatomic</u> ions.

Example: Barium nitrate (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>. Use the *criss-cross* method to balance subscripts.

Example: Ammonium sulfate (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>. Use the *criss-cross* method to balance the subscripts.

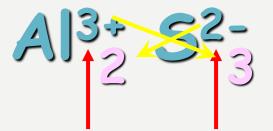
 H_4 Now balanced. Not balanced! = $(NH_4)_2SO_4$

Example: Iron (III) chloride (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a polyatomic ion. Use the *criss-cross* method to balance the subscripts.

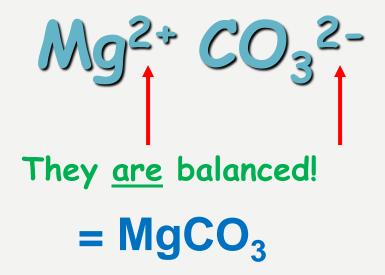

Fe³ Cl⁻ 3 Now balanced. Not balanced! = FeCl₃

Example: Aluminum sulfide (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>. Use the *criss-cross* method to balance the subscripts.



Not balanced! Now balanced. $= AI_2S_3$

Example: Magnesium carbonate (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

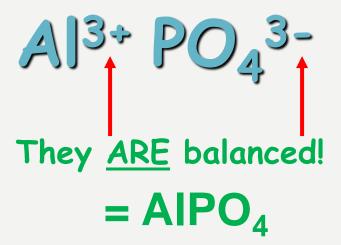
Example: Zinc hydroxide (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

3. Balance charges , if necessary, using subscripts. Use parentheses if you need more than one of a <u>polyatomic ion</u>. Use the *criss-cross* method to balance the subscripts.

Not balanced!


= **Zn(OH)**₂

Now balanced.

Example: Aluminum phosphate (note the 2 word name)

1. Write the formulas for the cation and anion, including <u>CHARGES</u>!

2. Check to see if charges are balanced.

NAMING IONIC COMPOUNDS

- I. Name the cation first, then anion
- 2. Monatomic cation = name of the element

 $Ca^{2+} = calcium ion$

• 3. Monatomic anion = root + -ide Cl^- = chloride $CaCl_2$ = calcium chloride

NAMING IONIC COMPOUNDS (Metals with multiple oxidation states)

- some metals can form more than one charge (usually the transition metals)
- use a <u>Roman numeral</u> in their name:
 - PbCl₂ use the <u>anion</u> to find the charge on the cation (chloride is always I-)

Pb²⁺ is the lead (II) cation

 $PbCl_2 = lead (II) chloride$

THINGS TO LOOK FOR:

- I) If cations have (), the number in parenthesis is their charge.
- 2) If anions end in -ide they are probably off the periodic table (Monoatomic)
- 3) If anion ends in -ate or -ite, then it is polyatomic

PRACTICE BY WRITING THE FORMULA OR NAME AS REQUIRED...

- Iron (II) Phosphate
- Stannous Fluoride
- Potassium Sulfide
- Ammonium Chromate
- MgSO₄
- FeCl₃

PRACTICE

- Page 267
 - ■#s |7 |9.
 - Chapter 9.2 practice problems from worksheet.

FORMATIVE REVIEW

- Write the formula for the following ionic compounds:
 - Aluminum Perchlorate
 - Lead (IV) Sulfide
 - Calcium Hydroxide
- Write the names of the following ionic compounds:
 - LiF
 - $Ra(CN)_2$
 - Cr_2Se_3

NAMING AND WRITING Formulas for molecular Compounds

• <u>OBJECTIVES:</u>

-Interpret the prefixes in the names of molecular compounds in terms of their chemical formulas.

NAMING AND WRITING Formulas for molecular Compounds

• <u>OBJECTIVES:</u>

-<u>Apply the rules</u> for naming and writing formulas for binary molecular compounds.

MOLECULAR COMPOUNDS ARE...

- made of just *nonmetals*
- smallest piece is a <u>molecule</u>
- can't be held together by opposite charge attraction
- can't use charges to figure out how many of each atom (there are *no charges present*)

MOLECULAR COMPOUNDS ARE EASIER!

- <u>lonic compounds</u> use *charges* to determine how many of each.
 - -You have to figure out charges.
 - -May need to criss-cross numbers.
- Molecular compounds: the <u>name tells</u>
 <u>you</u> the number of atoms.
 - -Uses **prefixes** to tell you the exact number of each element present!

PREFIXES (TABLE 9.4, P.269)

- | = mono-
- 2 = di-
- 3 = tri-
- 4 = tetra-
- 5 = penta-
- 6 = hexa-
- 7 = hepta-
- 8 = octa-

PREFIXES

- 9 = nona-
- 10 = deca-
- To write the name, write two words:

Prefix name -ide

• One exception is we don't write **mono** if there is only one of the first element.

PRACTICE BY NAMING THESE:

• N₂O

•NO₂

= dinitrogen monoxide

(also called nitrous oxide or laughing gas)

- = nitrogen dioxide
- **Cl**₂**O**₇ = dichlorine heptoxide
- •CBr₄
- = carbon tetrabromide
- **CO**₂ = carbon dioxide
- **BaCl₂** (This one will not use prefixes, since it is an ionic compound!)

WRITE FORMULAS FOR THESE:

- diphosphorus pentoxide
- tetraiodine nonoxide
- sulfur hexafluoride
- nitrogen trioxide
- carbon tetrahydride
- phosphorus trifluoride
- •aluminum chloride

(Ionic compound)

PRACTICE

- Page 270
 - -#s 20 25.

NAMING AND WRITING FORMULAS FOR ACIDS AND BASES

- **OBJECTIVES**:
 - -<u>Apply three rules</u> for naming acids.

NAMING AND WRITING FORMULAS FOR ACIDS AND BASES

• OBJECTIVES:

-<u>Apply the rules</u> in reverse to write formulas of acids.

NAMING AND WRITING FORMULAS FOR ACIDS AND BASES

- **OBJECTIVES**:
 - -<u>Apply the rules</u> for naming bases.

ACIDS ARE...

- Compounds that give off <u>hydrogen</u> <u>ions (H^{I+}) when dissolved in water</u> (the Arrhenius definition)
- •Will start the formula with H.
- There will always be some Hydrogen next to an anion.
- •The <u>anion</u> determines the name.

<u>RULES FOR NAMING ACIDS</u>: NAME IT AS A NORMAL COMPOUND FIRST

- If the anion attached to hydrogen ends in -ide, put the prefix hydroand change -ide to -ic acid
 - HCl hydrogen ion and chloride ion
 = hydrochloric acid
 - H₂S hydrogen ion and sulfide ion = hydrosulfuric acid

NAMING ACIDS

- If the anion has oxygen in it, then it ends in -ate or -ite
- 2) change the suffix -ate to -ic acid (use no prefix)
 - Example: HNO₃ Hydrogen and nitrate ions = Nitric acid
- 3) change the suffix -ite to -ous acid (use no prefix)
 - Example: HNO₂ Hydrogen and nitrite ions = Nitrous acid

NAMING ACIDS

Normal ending	Acid name is
ide	hydroic acid
ate	ic acid
ite	ous acid

2 ADDITIONAL RULES (NOT MENTIONED IN THE BOOK)

- 4) If the acid has <u>I more oxygen</u> than the -ic acid, add the prefix per
 - a. HClO₃ (Hydrogen Chlorate) is chloric acid
 - b. HClO₄ would be <u>per</u>chloric acid
- 5) If there is <u>I less oxygen</u> than the ous acid, add the prefix hypo-
 - HClO₂ (Hydrogen Chlorite) is chlorous acid, then HClO would be <u>hypo</u>chlorous acid

PRACTICE BY NAMING THESE:

•HF •**H**₃**P** •H₂SO₄ $\cdot H_2 SO_3$ •HCN •H₂CrO₄

WRITING ACID FORMULAS – <u>in reverse</u>!

- Hydrogen will be listed first
- The name will tell you the anion
- Be sure the charges cancel out.
- Starts with prefix hydro?- there is no oxygen, -ide ending for anion
- no prefix hydro?
 - I) -ate anion comes from -ic ending
 - 2) -ite anion comes from -ous ending

WRITE FORMULAS FOR THESE:

- hydroiodic acid
- •acetic acid
- carbonic acid
- phosphorous acid
- hydrobromic acid

NAMES AND FORMULAS FOR BASES

- A base is an ionic compound that produces hydroxide ions (OH^{I-}) when dissolved in water (the Arrhenius definition)
- Bases are named the same way as other ionic compounds:
 - -The name of the cation (which is a metal) is followed by the name of the anion (which will be hydroxide).

NAMES AND FORMULAS FOR BASES

- NaOH is sodium hydroxide
- Ca(OH)₂ is calcium hydroxide
- To write the formula:
 - I) Write the symbol for the metal cation
 - 2) followed by the formula for the hydroxide ion (OH¹⁻)
 - 3) then use the criss-cross method to balance the charges.

PRACTICE BY WRITING THE FORMULA FOR THE FOLLOWING:

- Magnesium hydroxide
- Iron (III) hydroxide
- •Zinc hydroxide

SUMMARY OF NAMING AND FORMULA WRITING

- For naming, follow the flowchart-Figure 9.20, page 277
- For writing formulas, follow the flowchart from Figure 9.22, page 278

HELPFUL TO REMEMBER...

- I. In an ionic compound, the net ionic charge is <u>zero</u> (criss-cross method)
- 2.An <u>-ide</u> ending generally indicates a binary compound
- 3.An <u>-ite</u> or <u>-ate</u> ending means there is a polyatomic ion that has oxygen
- 4. <u>Prefixes</u> generally mean molecular; they show the number of each atom

HELPFUL TO REMEMBER...

5.A <u>Roman numeral</u> after the name of

a cation is the <u>ionic charge</u> of the cation

End of Chapter 9