# ACCELERATION

 $\bigcirc$ 

0

MATHEMATICAL & GRAPHICAL ANALYSIS

## ACCELERATION

### •The change in velocity per unit time.

•Vector •Units =  $m/s^2$ 

## CONCEPTUAL UNDERSTANDING

- T/F Acceleration and velocity act in the same direction.
- T/F An object can have an instantaneous velocity of zero and an acceleration that is not zero.
  - T/F An object can accelerate while keeping a constant speed.
  - T/F If an object returns to the starting point, its average acceleration is zero.
  - T/F An object can experience a non-zero acceleration and keep a constant velocity.
  - T/F When an object changes direction from east to west, its acceleration is zero for an instant.

#### MATHEMATICAL ACCELERATION PROBLEMS.

- A car is initially traveling 20 m/s [E]. It then accelerates to 32 m/s [E] in 3.5 seconds.
   Calculate the acceleration of the car.
  - Step 1: Set up a coordinate system.
  - Step 2: Reread and list known & wanted quantities. Make quantities relative to the positive direction if necessary.
    - If given no initial position information, initial position is zero.
  - Step 3: Check for a formula using only the known and wanted quantities.
    - If there are none, check if a different variable can be calculated with given values.
  - Step 4: Plug 'n chug place known values in to the equation and solve.
  - Step 5: Check answer conceptually does the value and direction make sense?

# SOLVING FOR FINAL VELOCITY

A car is initially moving 15 m/s [E] and accelerates at 3.5 m/s<sup>2</sup> [E] for 9.2 seconds. Calculate the car's final velocity.
Check mentally first!

# SOLVING FOR INITIAL VELOCITY A plane accelerates to 175 m/s [E] under an acceleration of 15 m/s<sup>2</sup> in 10 seconds. Calculate the initial velocity of the plane.

• Check mentally first!

#### THE DREADED SOLVING FOR TIME PROBLEM

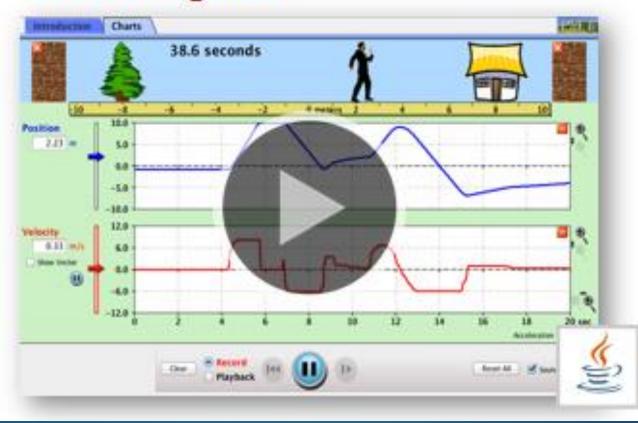
 Calculate how long it would take a person to accelerate from 5.0 m/s [E] to 35 m/s [E] averaging an acceleration of 1.8 m/s<sup>2</sup> [E].

• Again, conceptually think about it first.

#### ACCELERATION WORKSHEET

Objects do not change direction.
Omit #5

# ACCELERATION: CHANGING DIRECTIONS A baseball is thrown 15 m/s [W] and 5.6 s later it is moving 21 m/s [E]. Calculate the average acceleration of the baseball.


**ACCELERATION: THROWN OBJECTS** 

•A dime is thrown upwards with a velocity of 35 m/s. Calculate the velocity of the dime 5.0 seconds later (no air resistance). **ACCELERATION & POSITION** •A car is initially traveling 20 m/s [E]. It then accelerates to 32 m/s [E] in 3.5 seconds. a)Calculate the average acceleration. b)Calculate the final position of the car at that time. SO...MANY...QUESTIONS •An object initially moving 35 m/s [E] experiences an acceleration at 8.5  $m/s^2$  [W]. Calculate the time it will take the object to have a final position of 175 m [W].

## GRAPHICAL ANALYSIS OF VELOCITY - TIME

## **GRAPHICAL ANALYSIS OF VELOCITY - TIME**

#### The Moving Man

