JMH Chemistry 112
 Course Outline 2018-2019

Mr. Peter MacDonald
Room 525
Peter.macdonald3@nbed.nb.ca
http://imh.nbed.nb.ca/teacher/mr-macdonald
YouTube: P. MacDonald (Lectures \& Example Problems)
Twitter: @mrpmacdonald

Content Units

1: From Structures to Properties ($\mathbf{3 8} \mathbf{h r s)}$

- Classification of Matter (6 hrs)
- Underlying Structure of Matter (8 hrs)
- Elements and Compounds (8 hrs)
- Chemical Bonding (9 hrs)
- Molecular Shape - VESPR Theory (2 hrs)
- Intermolecular Forces (2 hrs)
- Properties (3 hrs)

2: Stoichiometry (52 hrs)

- The Mole (12 hrs)
- Chemical Changes (8 hrs)
- Stoichiometry (32 hrs)

Science Inquiry and Engineering Design Process

Engineering Design Process

Standards-Based Grading: A Six Point Scale

Each unit listed above will have learning targets that will be graded on a six point scale. As a student, you will keep a portfolio of your work towards understanding course concepts. This will be important in determining a percentage grade (which you will only receive on report cards). Tests, quizzes, concept-checks and the exam will all be scored using the system below:

Expert	$\mathbf{6}$	Near perfect demonstration of understanding/skill; high confidence; mastery of learning standard	"You could teach this."
	$\mathbf{5}$	Strong demonstration of understanding/skill; high confidence; slight error involved	"Almost perfect, just one little error."
	$\mathbf{4}$	Good demonstration of understanding/basic skills; confidence evident; a few errors	"Good understanding with just a few errors."
	$\mathbf{3}$	Satisfactory demonstration of understanding/basic skills; key concepts are lacking; errors common	"You are missing some of the key concepts, but have achieved the bare minimum to pass."
Novice	$\mathbf{2}$	Minimal understanding of key concepts and rudimentary demonstration of basic skills; many errors	"You are starting to understand, but have not shown enough to pass."
	$\mathbf{1}$	Inadequate understanding key concepts and little to no demonstration of basic skills; errors throughout	"Credit or pass not possible at this time."

Near report card time we will meet and agree on a percentage score (although, as teacher I do have final say based on your work) using the table below:

Learning Category	Classification Level	Only shortly before report cards will a percentage mark be discussed and determined		
	6	95	97	100
	5	86	90	94
Apprentice	4	73	80	85
	3	60	66	72
Novice	2	50	56	59
	1	0	25	49

Remember, each learning target will be scored $1-6$ and it will be possible to improve a score through continued practice, conversations, and assignments, projects, re-quizzing and retesting.

A sample student learning tracking sheet is below:

Learning Target Unit: Kinematics	Score (1-6)						
I can identify the frame of reference for a given motion.	Date:						
	Score:						
I can use vectors to represent force, velocity, and acceleration.	Date:						

