# Refraction

PHYSICS 112: LIGHT LEARNING TARGET 3 (LLT3)

# Refraction: The change in direction of light as it enters a different medium



# Refraction

- Light changes direction, when entering a different medium at an angle, because it is a wave.
  - The new angle within the medium is called the refracted angle.
    Bending Light



# Index of Refraction

It is represented by the variable n, and is a ratio of the speed of light in a perfect vacuum to that of the medium it is in.

$$n = \frac{c}{v}$$

The number will always be greater or equal to 1, and it measures by what factor light slows down in a medium.

# Index of Refraction

| Substance                                      | Index of Refraction ( <i>n</i> ) |  |
|------------------------------------------------|----------------------------------|--|
| vacuum                                         | 1.00000                          |  |
| gases at 0°C, 1.013 $	imes$ 10 <sup>5</sup> Pa |                                  |  |
| hydrogen                                       | 1.00014                          |  |
| oxygen                                         | 1.00027                          |  |
| air                                            | 1.00029                          |  |
| carbon dioxide                                 | 1.00045                          |  |
| liquids at 20°C                                |                                  |  |
| water                                          | 1.333                            |  |
| ethyl alcohol                                  | 1.362                            |  |
| glycerin                                       | 1.470                            |  |
| carbon disulfide                               | 1.632                            |  |

| Substance                                     | Index of Refraction ( <i>n</i> ) |
|-----------------------------------------------|----------------------------------|
| solids at 20°C                                |                                  |
| ice (at 0°C)                                  | 1.31                             |
| quartz (fused)                                | 1.46                             |
| optical fibre (cladding)                      | 1.47                             |
| optical fibre (core)                          | 1.50                             |
| Plexiglas <sup>™</sup> or Lucite <sup>™</sup> | 1.51                             |
| glass (crown)                                 | 1.52                             |
| sodium chloride                               | 1.54                             |
| glass (crystal)                               | 1.54                             |
| ruby                                          | 1.54                             |
| glass (flint)                                 | 1.65                             |
| zircon                                        | 1.92                             |
| diamond                                       | 2.42                             |

# Index of refraction: Mathematical Analysis

n 12

► Example 1:

The speed of light in a solid is 2.50 x 10<sup>8</sup> m/s. Calculate the solid's refractive index.

► Example 2:

Calculate the speed of light in glycerin.

Index of refraction: Mathematical Analysis  $n = \frac{c}{v}$ 

► Example 3:

Calculate the wavelength of yellow light in Plexiglas if its frequency is 7.05 x 10<sup>14</sup> Hz.

#### Example 4:

A ray of light is reflected within the cuts of a diamond for 1.5 seconds. Calculate the distance traveled by light in that time.

Practice Problems #s 1 – 10.

# Investigating Refraction

Using the light boxes and available glass blocks, identify:
Light changing direction as it goes from a fast to slow medium.
Light changing direction as it goes from a slow to fast medium.
Is there a maximum angle of refraction in the slower medium?
Is there a maximum angle of incidence in the slower medium?
Can you make a rainbow?

# Refraction Diagram & Terms



# Angle of Refraction

- Less than the angle of incidence when light travels in to a slower moving, larger n value, medium.
- Greater that the angle of incidence when light travels to a faster moving, lower n value, medium.
  Bending Light



# Snell's Law

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

1 = incident, or where light begins in the problem.
2 = refracted, or where light ends in the problem.

Example 1: Light travels from air into water. The incident angle was 60°. Calculate the angle of refraction.

### Snell's Law Examples

Example 2: Light travels from zircon into an unknown material. The angle of incidence was 33° and the angle of refraction was 42°. Calculate the speed of light in the unknown material.

Example 3: Light is traveling from water into flint glass. Calculate the largest possible angle of refraction.

# Total Internal Reflection & Critical Angle





# Total Internal Reflection & Critical Angle

- Recall that when entering a new medium, some light is reflected and some is refracted.
- Total internal reflection occurs when light travels into a faster medium and the angle of refraction would calculate to 90° (or greater).
- ► When the angle of refraction is 90°, the angle of incidence is called the **critical angle**,  $\theta_c$ .
- Angles of incidence greater than θ<sub>c</sub> result in total internal reflection.



Fiber optical cables apply this theory to keep a significant amount of light from exciting the cable.

#### Total Internal Reflection & Critical Angle

Example 1: Calculate the critical angle for light traveling from water into air.

Example 2: Calculate the critical angle for light traveling from diamond into sodium chloride.

# Lateral Displacement

- When light travels from, for example, air into glass, then back into air, it is refracted twice.
- If the two refracting surfaces are parallel, the emergent ray is parallel to the incident ray, but displaced by a certain amount.





- ► Eyes
- Lenses (glasses, contact lenses, cameras, telescopes)
   Fiber optic cable
- Rear-view mirror dimming.



Distortions as light exits a liquid (the bent spoon).



- Distortions as light as it travels through the atmosphere.
  - Sunset/rise: Sun is actually below the horizon, but we can see it.
  - Twinkling stars

► Waves in the air near heat sources.





Puddle mirage on the road.



- Red Moon during lunar eclipse
- Other colors have smaller wavelengths and are scattered by the particles in the atmosphere.

