ADVANCED MATHEMATICS WITH CALCULUS 120

LIMITS

1. Evaluate the following limits if they exist. If a limit does not exist provide a reason to support your claim.

(a)
$$\lim_{x \to 0} \frac{\frac{2}{x+2} - 1}{x}$$
 (b) $\lim_{x \to \infty} \frac{(2 - 3x^2)^2}{6x^4 - 7x^2 - 5}$

(c)
$$\lim_{x \to 1} \frac{(x+2)^3 - 27}{x-1}$$
 (d) $\lim_{x \to 7} \frac{\sqrt{x+9} - 4}{x-7}$

2. Given the function ...
$$f(x) = \begin{cases} 3-x & \text{if } x < -1 \\ 4 & \text{if } -1 \le x < 2 \\ 6 & \text{if } x = 2 \\ (x-2)^2 + 4 & \text{if } x > 2 \end{cases}$$

Draw a sketch of f(x) and list any point(s) of discontinuity

3. The following is a graph of f(x):

Evaluate each of the following:

- (a) $\lim_{x \to -3^+} f(x) =$ (b) $\lim_{x \to -3^-} f(x) =$ (c)
- (c) f(-3) = (d) $\lim_{x \to 2^{-}} f(x) =$
- (e) $\lim_{x \to 2^+} f(x) =$ (f) f(2) = (g) $\lim_{x \to 3} f(x) =$ (h) f(3) =

4. Differentiate the following functions using the *limit definition of the derivative:*

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

a)
$$f(x) = x^2 + 4x + 2$$

b) $f(x) = \frac{2x - 1}{4x}$

5. Find the slope of the tangent to the curve at the given point.

a)
$$f(x) = 3x^2 + \frac{5}{x} - 4$$
 at $x = -2$
b) $f(x) = \frac{4}{x^3}$ at $x = 3$

6. Find the equation of the tangent line to the curve at the given point.

a)
$$y = 3x^2 + 5x$$
 at (2, 22)
b) $y = 2x^2 - 6\sqrt{x}$ at (4, 20)

7. Find the derivative: Express answers with positive exponents!

a)
$$f(x) = 3x^5 + \sqrt[3]{x}$$

b) $f(x) = \sqrt[5]{x^2}$

c)
$$g(x) = 4x^3 - \frac{6}{x^2} + 14x$$

d) $y = (3x^2 - 5)^2$