SOLUTIONS \Rightarrow REVIEW
(Fact.Not/Perm./Gomb./Pas. $\Delta /$ Bin. Exp.
1a) cOmbination \Rightarrow Order is Nor important.
b) Permutation \Rightarrow Order is important ($1^{\text {St }}, 2^{\text {nd }}, 3^{\text {rd }}$ place Winners)
c) Combination \Rightarrow Order is NOT important.
d) Permutation \Rightarrow Order is important (President, Vice-President, Secretary)
e) Permutation \Rightarrow Order is important. (first \& second prize Winners)

2a) $\frac{5!}{4!}=5 \times 4$
b) $10 \times 9 \times 8=\frac{10!}{7!}$

FALSE
TRUE
C) ${ }_{8} P_{2}=56$
d) ${ }_{100} P_{4}=100 \times 99 \times 98 \times 97$

TRUE
TRUE

3a) $7 \times 6 \times 5$
b) $19 \times 9 \times 8 \times 7 \times 6$

$$
=\frac{7!}{4!}
$$

$$
=\frac{19!9!}{18!5!}
$$

C)

$$
\begin{array}{ll}
10 \times 9 \times 8 \times 7 \times 6 & \text { d) } 30 \times 29 \times 12 \times 11 \times 10 \times 9 \\
=\frac{10!}{5!} & =\frac{30!12!}{28!8!}
\end{array}
$$

4a)

$$
\begin{aligned}
& n P_{r}=\frac{n!}{(n-r)!} \\
& { }_{8} P_{3}=\frac{8!}{(8-3)!} \\
& { }_{8} P_{3}=336
\end{aligned}
$$

b)

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

$$
{ }_{8} P_{8}=\frac{8!}{(8-8)!}
$$

$$
{ }_{8} P_{8}=40320
$$

5. ROUND TABLE!

$$
\begin{array}{rlrl}
& \frac{n P_{n}}{n} & \underline{=} & (n-1)! \\
= & 5 P_{5} \\
= & \frac{120}{5} & = & (5-1)! \\
= & 24 . & =24! \\
= & & =24 .
\end{array}
$$

ba) Boys Girls 2 boys And 3 girls

$$
\begin{array}{lll}
{ }_{4} C_{2}=\frac{4!}{2!(4-2)!} & { }_{6} C_{3}=\frac{6!}{3!(6-3)!} & 6 \times 20 \\
{ }_{4} C_{2}=6 & { }_{6} C_{3}=20 & =120 .
\end{array}
$$

b)

$$
\begin{array}{lll}
\underline{\text { Boys }} & \underline{\text { Girls }} & 4 \text { boys AND lg } \\
{ }_{4} C_{4}=\frac{4!}{4!(4-4)!} & { }_{6} C_{1}=\frac{6!}{1!(6-1)!} & 1 \times 6 \\
{ }_{4} C_{4}=1 & { }_{6} C_{1}=6 & =6
\end{array}
$$

C) Alt Boys

$$
{ }_{4} C_{5}=\frac{4!}{5!(4-5)!}
$$

\rightarrow This is ImpossIBLE! You cannot choose a group of boys in total. are only 4 boys in total.

$$
\text { 7. } \begin{aligned}
\eta C_{r} & =\frac{n!}{r!(n-r)!} \\
100 C_{4} & =\frac{100!}{4!(100-4)!} \\
{ }_{100} C_{4} & =3921225
\end{aligned}
$$

P(guessing the winning number)

$$
=\frac{1}{3921225}
$$

8.a) Row 12 is shown. The second number is always the same as the row number.
b) Row 13 .

$$
\begin{aligned}
& { }_{13} C_{13} C_{113} C_{213} C_{313} C_{413} C_{513} C_{613} C_{7}{ }_{13} C_{8}{ }_{13} C_{9}{ }_{13} C_{1013} C_{11}{ }_{13} C_{12} C_{13} \\
& =1 \quad 137828671512871716117612871715 \\
& =186 \\
& 18 \\
& 13
\end{aligned}
$$

c) Row 11

$$
\begin{array}{rl}
& { }_{11} C_{0}{ }_{11} C_{1}{ }_{11} C_{2}{ }_{11} C_{3}{ }_{11} C_{4}{ }_{11} C_{5}{ }_{11} C_{6}{ }_{11} C_{7}{ }_{10} C_{8}{ }_{11} C_{9}{ }_{11} C_{10}{ }_{11} C_{11} \\
= & 1 \quad 1155 \\
= & 169 \\
113046246233016955 ~ & 11
\end{array}
$$

9

$$
\begin{array}{ll}
\text { a) } \begin{array}{ll}
n=4 & \eta=4 \\
j=1 & j=2 \\
& n C_{j-1}
\end{array} & n C_{i-1} \\
=4 C_{1-1} & =4 C_{2-1} \\
=4 C_{0} & =4 C_{1} \\
=1 & =4 .
\end{array}
$$

b)

$$
\begin{aligned}
& n=12 \\
& n=12 \\
& i=2 \\
& n=12 \\
& i=1 \\
& { }_{n} C_{i-1} \\
& ={ }_{12} C_{1-1} \\
& ={ }_{12} C_{0} \\
& ={ }_{12} C_{2-1} \\
& ={ }_{12} C_{3-1} \\
& =1 \\
& ={ }_{12} C_{1} \\
& ={ }_{12} C_{2} \\
& =12=66
\end{aligned}
$$

c)

$$
\begin{aligned}
& n=18 \\
& i=7
\end{aligned}
$$

${ }_{n} C_{i-1}$
$={ }_{18} C_{7-1}$
$={ }_{18} C_{6}$
$=18564$
d)

$$
\begin{aligned}
& \eta=15 \\
& i=8 .
\end{aligned}
$$

$$
\begin{aligned}
& n C_{i-1} \\
= & 15 C_{8-1} \\
= & 15 C_{7} \\
= & 6435
\end{aligned}
$$

10.a) $(x+2)^{6}$
$\left.={ }_{6} C_{6}(x)^{4}(2)^{0}+{ }_{6} C_{1}(x)^{5}(2)^{1}+{ }_{6} C_{2}(x)^{4}(2)^{2}+{ }_{6} C_{3}(x)^{3}(2)^{3}{ }_{6} C_{4}(x)^{2}(2)^{4}{ }_{6} C_{5}(x)(2)\right)^{5}{ }_{6} C_{6}(x)^{6}(2)^{6}$ $\left.=(1)\left(x^{6}\right)(1)+(6)\left(x^{5}\right)(2)+(15)\left(x^{4}\right)(4)+(20)\left(x^{3}\right)(8)+(15)\left(x^{2}\right)(16)+(6)\left(x^{1}\right)(32)+(1)(1) 64\right)$
$=1 x^{6}+12 x^{5}+60 x^{4}+160 x^{3}+240 x^{2}+192 x^{1}+64$
b) $(x+3)^{4}$
$={ }_{4} C_{0}(x)^{4}(3)^{0}+{ }_{4} C_{1}(x)^{3}(3)^{1}+{ }_{4} C_{2}(x)^{2}(3)^{2}+{ }_{4} C_{3}(x)^{\prime}(3)^{3}+{ }_{4} C_{4}(x)^{0}(3)^{4}$
$=(1)\left(x^{4}\right)(1)+(4)\left(x^{3}\right)(3)+(6)\left(x^{2}\right)(9)+(4)\left(x^{1}\right)(27)+(1)(1)(81)$
$=1 x^{4}+12 x^{3}+54 x^{2}+108 x^{1}+81$

$$
\begin{aligned}
& \text { C) }(x-4)^{5} \\
& L_{>}(x+(-4))^{5} \\
& ={ }_{5} C_{0}(x)^{5}(-4)^{0}+{ }_{5} C_{1}(x)^{4}(-4)^{1}+{ }_{5} C_{2}(x)^{3}(-4)^{2}+{ }_{5} C_{3}(x)^{2}(-4)^{3}+{ }_{5} C_{4}(x)^{1}(-4)^{4}+{ }_{5} C_{5}(x)(-4)^{5} \\
& \left.=(1)\left(x^{5}\right)(1)+(5)\left(x^{4}\right)(-4)+(10)\left(x^{3}\right)(16)+(10)\left(x^{2}\right)(-64)+(5)\left(x^{1}\right)(256)+(1)(1)\right)(-1024) \\
& = \\
& =x^{5}-20 x^{4}+160 x^{3}-640 x^{2}+1280 x^{1}-1024
\end{aligned}
$$

d) $(x-6)^{3}$

\[

\]

$$
\begin{aligned}
& \text { 11. }(x+3)^{20} \\
& ={ }_{20} C_{0}(x)^{20}(3)^{0}+{ }_{20} C_{1}(x)^{19}(3)^{1}+{ }_{20} C_{2}(x)^{18}(3)^{2}{ }_{000} \\
& =(1)\left(x^{20}\right)(1)+(20)\left(x^{19}\right)(3)+(190)\left(x^{18}\right)(9) 000 \\
& =1 x^{20}+60 x^{19}+1710 x^{18} 000
\end{aligned}
$$

