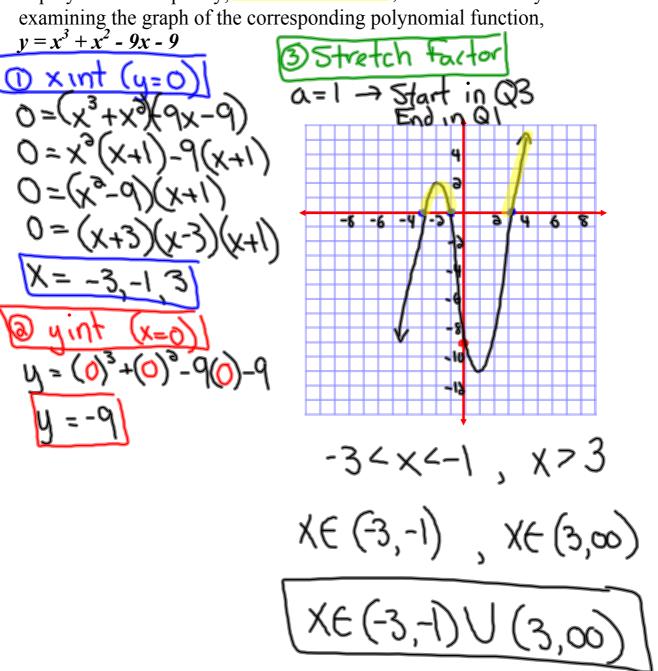
Solving Polynomial Inequalities

where does the "y" values greater than O Using the Graph

A polynomial inequality, $x^3 + x^2 - 9x - 9 > 0$, can be solved by



Interval Notation

The statement -2 < x < 3 can be written as $x \in (-2, 3)$; that is x belongs to the interval (-2, 3). The round brackets mean that x is not equal to -2 or 3.

The statement $-4 \le x \le 2$ can be written as $x \in [-4, 2]$. The square brackets mean that x may be equal to -4 or 2.

Explain the meaning of the following interval notations.

$$x \in (-\infty, 2) \qquad -\infty < x < 2 \rightarrow \times 4$$

$$x \in (-\infty, 2] \qquad -\infty < x \le 2 \rightarrow \times 4$$

$$x \in (3, \infty) \qquad 3 < x < \infty \rightarrow \times 3$$

$$x \in [3, \infty) \qquad 3 \le x < \infty \rightarrow \times 3$$

Note: Infinity cannot be inclusive

Solving Polynomial Inequalities

Using the Number Line

Example: $x^3 + x^2 > 6x$

- **Step 1:** State the Roots of the function
- Step 2: Draw a number line and mark the roots of the equation. These coots separate the rest of the number line into three intervals.

 $x \in (-\infty, small \ x-int)$ $x \in (small \ x-int, large \ x-int)$ $x \in (large \ x-int, \infty)$

- **Step 3:** The value of the expression $x^3 + x^2 6x$ has the same sign throughout each interval in step 2 because a function can only change signs at a root. Therefore, choose a *test value of x* in each interval and evaluate the expression. Write a plus or a minus over that interval on the number line to indicate whether the expression is positive or negative.
- **Step 4:** State the intervals for which $x^3 + x^2 6x > 0$

Using the Number Line

Example:
$$x_3^3 + x_2^2 > 6x$$

 $x_3^3 + x_3^2 - 6x > 0$

Step 1: State the Roots of the function

$$0 = (x)(x+3)(x-3)$$

$$0 = (x)(x+3)(x-3)$$

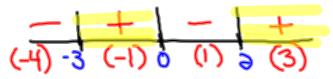
x=-3,0,2

Step 2: Draw a number line and mark the roots of the equation. These roots separate the rest of the number line into three intervals.

 $x \in (-\infty, small x-int)$

 $x \in (small x-int, large x-int)$

 $x \in (large x-int, \infty)$



Step 3: The value of the expression $x^3 + x^2 - 6x$ has the same sign throughout each interval in step 2 because a function can only change signs at a root. Therefore, choose a test value of x in each interval and evaluate the expression. Write a plus or a minus over that interval on the number line to indicate whether the expression is positive or negative.

whether the expression is positive or negative.

$$y = x^3 + x^3 - 6x$$
 $y = (-1)^3 + (1)^3 - 6(1)$
 $y = (-1)^3 + (1)^3 + (1)^3 - 6(1)$
 $y = (-1)^3 + (1)^$

Step 4: State the intervals for which $x^3 + x^2 - 6x > 0$

 $X \in (-3,0) \cup (2,\infty)$

Homework

X3-X9-13×€0

Solve using a graph then using a number line. Express answer in Interval Notation