Midterm

Reference Energy State

Reference energy state - elements are defined as the reference point at which the potential energy is shown to be zero.

Therefore:
$$E_p \text{ of } H_{2(g)} = 0 \text{ kJ}$$

$$OkT$$

Ex. $H_{2(g)} + 1/2O_{2(g)} \longrightarrow H_2O_{(g)} \Delta H_f = -285.8 kJ$

*allows us to describe the enthalpy change for a formation reaction from zero to a final value

Predicting ΔH_r Using Formation Reactions

The Standard Enthalpy Change (ΔH^{o}_{r}) for a reaction can be found by writing the formation equation and corresponding standard enthalpy change for each compound in the given equation and then applying Hess's Law.

Ex.
$$CaO_{(s)} + H_2O_{(l)} \longrightarrow Ca(OH)_{2(s)}$$
 $\Delta H_r = ?$

Step 1: Write formation equations (with standard enthalpy change) each compound in the given equation.

①
$$(a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)})$$
 $(a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)})$ $(a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)} + \frac{1}{2}O_{2(g)})$ $(a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)} + \frac{1}{2}O_{2(g)})$ $(a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)} + \frac{1}{2}O_{2(g)}) \longrightarrow (a_{(s)} + \frac{1}{2}O_{2(g)})$

Step 2: Apply Hess's Law

$$\frac{\text{RevO}}{\Phi} = \frac{1}{\text{Ga(s)}} + \frac{1}{2} \frac{1}{\text{O}_{29}} = \frac{1}{\text{A}_{1}} = \frac{1}{1634.9} = \frac{1$$

Enthalpies of Formation to Predict ΔH_r

$$\Delta H_r = \Delta H_f + (-\Delta H_f) + (-\Delta H_f)$$

$$\frac{Ca(OH)_2}{CaO} + \frac{CaO}{H_2O}$$

$$\Delta H_r = \Delta H_f - (\Delta H_f + \Delta H_f)$$
Ca(OH)₂ CaO H₂O

$$\Delta H_r = \Delta H_{fp} - \Delta H_{fr}$$
products reactants

$$\Delta H_r = \sum n H_{fp} - \sum n H_{fr}$$

knowing that $\Delta H = nH$

Ex. What is the standard enthalpy change for the combustion of methane fuel?

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_{2}O_{(g)}$$

$$AH_{r} = ?$$

$$AH_{r} = 2nH_{fp} - 2nH_{fr}$$

$$AH_{r} = (1 \text{ mol})(-393.5 \frac{kJ}{mol}) + (2 \text{ mol})(-241.8 \frac{kJ}{mol}) - (1 \text{ mol})(-74.4 \frac{kJ}{mol}) + (2 \text{ mol})(0 \frac{kJ}{mol})$$

$$AH_{r} = (-393.5 \text{ kJ}) + (-483.6 \text{ kJ}) - (-74.4 \text{ kJ})$$

$$AH_{r} = (-871.1 \text{ kJ}) - (-74.4 \text{ kJ})$$

$$AH_{r} = -802.7 \text{ kJ}$$