Multi-Step Energy Calculations

Step 1: Find H^o general

- -use Hess's law
- -from equation
- -use calorimetry

Step 2: Find n (specific)

- -use mass (molar mass)
- -use concentration
- -use $n = \Delta H/H^o$

Step 3: $Find \Delta H$ (specific)

-use $\Delta H = nH^{o}$

Sample Problem

Ex.
$$2NaHCO_{3(s)} + 129.2kJ \longrightarrow Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(g)}$$

What quantity of energy, ΔH_r , is required to decompose 100. kg of NaHCO_{3(s)}?

$$\Delta H_r = (1190334 \text{ mol}) \left(46 \frac{\text{k}}{\text{mol}} \right)$$

Sample Problem

Ex.
$$ZnS_{(s)} + 3/2O_{2(g)}$$
 $ZnO_{(s)} + SO_{2(g)}$

What quantity of energy, ΔH_r , can be obtained from roasting of 50.0kg of zinc sulfide ore?

Multi-Step Energy Calculations can be used when energy produced in one chemical reaction is used to heat another substance. These calculations are very similar to calorimetry calculations.

total enthalpy change = quantity of heat

$$\Delta H_r = -q$$

Sample Problem

What mass of octane is completely burned during the heating of 20.L of aqueous ethylene glycol automobile coolant from -10°C to 70°C? The volumetric heat capacity of aqueous ethylene glycol is 3.7 kJ/L°C.

Ex.
$$2C_8H_{18(1)} + 25O_{2(g)}$$
 — $18H_2O_{(g)} + 16CO_{2(g)}$

Step 1: Hr (general)

Alt = $2nH_{B} - 2nH_{G}$

Alt = $(8 \text{ mol})(-2H.8 \frac{1}{\text{mol}}) + (6 \text{ mol})(-3935 \frac{1}{\text{mol}}) - (2 \text{ mol})(-2501 \frac{1}{\text{mcl}}) + (25 \text{ mol})(0 \frac{1}{\text{mol}})$

Alt = nH_{C}

(- $0H_{C}^{2}2H_{C}^{2}$) = $(2 \text{ mol})H_{C}$

Hr = -5074.1 KJ/mol

Step 2: $n(\text{specific})$

Alt = $-q$
 $nH_{C} = -vC\Delta T$
 $n = -(20L)(37L_{C}^{2}C)(80.{}^{\circ}C)$
 $-5074.1 \frac{1}{\text{mol}}$
 $n = 1.1667 \text{ mol}$

Step 3: $m(\text{specific})$
 $n = 1.1667 \text{ mol}$

Step 3: $m(\text{specific})$

Worksheet #1-5