Math 11

Quadratics \#2 - Review \#1

1. Which quadrant is the vertex of $(y+3)=(x-2)^{2}$ located in?
a) I
b) II
c) III

```
Vertex:
(2,-3) =>QUIADRANT IV
```


2. Which quadrant is the vertex of $\frac{1}{3}(y-2)=(x+3)^{2}$ located in?
a) I
(b) II
c) III
d) IV

$$
\begin{aligned}
& \text { Vertex: } \\
& (-3,2)=>\text { QUADRANT.II }
\end{aligned}
$$

3. Rewrite the following equation in standard form: $-4(y-1)=x^{2}$
$\begin{array}{ll}\text { a) } y=-4 x^{2}+1 & \text { b) } y=-\frac{1}{4} x^{2}+1\end{array}$

$$
\begin{aligned}
-4(y-1) & =x^{2}(T F)^{4} \\
y-1 & =-\frac{1}{4} x^{2} \\
y & =-\frac{1}{4} x^{2}+1(S F)
\end{aligned}
$$

c) $y=4 x^{2}-1$
d) $y=\frac{1}{4} x^{2}+1$
4. Rewrite the following equation in transformational form: $y=\frac{1}{3}(x-2)^{2}+1$
(a) $3(y-1)=(x-2)^{2}$
b) $\frac{1}{3}(y+1)=(x-2)^{2}$
c) $\frac{1}{3}(y-1)=(x+2)^{2}$
d) $3(y+2)=(x-1)^{2}$
$y=\frac{1}{3}(x-2)^{2}+1(S F)$
${ }_{3} \begin{aligned} & y-1=\frac{3}{1}(x-1)=\frac{1}{3}(x-2)^{2}\end{aligned}$
$3(y-1)=^{3}(x-2)^{2}(T F)$ Rewrite the following equation in general form: $y=2(x-1)^{2}+3$
a) $y=2 x^{2}-2 x+5$
$y=2(x-1)^{2}+3(S F)$
$y=2(x-1)(x-1)+3$

$y=2(x-1)(x-1)+3$
$y=(2 x-2)(x-1)+3$

$$
\begin{aligned}
& y=2 x^{2}-2 x-2 x+2+3 \\
& y=2 x^{2}-4 x+5(G F)
\end{aligned}
$$

d) $y=2 x^{2}-4 x+5$
6. Where is the axis of symmetry located in the following parabola: $2(y-1)=(x-3)^{2}$
a) $x=2$
b) $x=1$
(c) $x=3$
d) $y=1$
vertex: $(3,1)$

Axis of symmetry: $x=3$
7. What would be the range of the following quadratic function: $-2(y-1)=(x+1)^{2} \vee \operatorname{ertex}:(-1,1)$
a) $\{y \mid y \geq-2, y \in R\}$
b) $\{x \mid x \leq-1, x \in R\}$
c) $\{y \mid y \leq 1, y \in R\}$ d) $\{x \mid x \geq 1, x \in R\}$ Range 。 * Opens Down hard.
$\{y i y \leq 1, y \in R\}$
8. Given this graph and its equation: $\frac{1}{a}(\mathrm{y}-\mathrm{k})=(\mathrm{x}-\mathrm{h})^{2}$

What would happen if " h " was changes? The graph would:
a) move sideways
b) move up or down
c) be reflected in the x-axis
d) be stretched
9. What would happen if " k " was changed? The graph would:
a) move sideways
b) move up or down
c) be reflected in the x-axis
d) be stretchec

10. Sketch the graph of: $y=2(x-1)^{2}-10$
$\left.\begin{array}{c|c}\hline x & y \\ \hline-2 & 8 \\ -1 & -2 \\ \hline 0 & -8 \\ \hline & -1 \\ \hline 2 & -8 \\ \hline 3 & -8 \\ \hline & -2\end{array}\right\}$

What is the Domain? $\{x \mid x \in R\}$
What is the Range? $\{y \mid y \geq-10, y \in R\}$

11. The x-intercepts of a parabola are $(2,0)$ and $(10,0)$. Which of the following points could be the vertex?
a) $(12,0)$
(b) $(6,-4)$
c) $(6,4)$
d) $(8,-4)$

* Since the vertex will be half way in between the x-intercepts:
Average of x-values:

* 2 possible solutions \rightarrow check sketch!

12. The x-intercepts of a parabola are $(-3,0)$ and $(11,0)$. Which of the following points could be the vertex?
a) $(8,-4)$
b) $(7,3)$
(c) $(4,4)$
d) $(4,-4)$

Average of x-values:

$$
\begin{aligned}
& -\frac{3+11}{2}=\frac{8}{2}=4 \\
& \Rightarrow \text { vertex: }
\end{aligned}
$$

* 2 possible solutions \rightarrow check sketch!

13. Rewrite the following equation in transformational form: $y=3(x-1)^{2}+2$

$$
\begin{aligned}
& \text { a) }(y+2)=3(x-1)^{2} \\
& y=3(x-1)^{2}+2(y)(y-2)= \\
& y-2=3(x-1)^{2} \\
& \frac{1}{3}(y-2)=(x-1)^{2}(T F)
\end{aligned}
$$

b) $\frac{1}{3}(y-2)=(x-1)^{2}$
c) $3(y-2)=\frac{1}{3}(x-1)^{2}$
d) $3 y-2=(x-1)^{2}$
14. Rewrite the following equation in transformational form: $y=3 x^{2}-12 x+5$
a) $\frac{1}{3}(y+7)=(x-2)^{2}$
b) $3(y-7)=(x-2)^{2}$
c) $-\frac{1}{3}(y-7)=(x+2)^{2}$
d) $3(y+2)=(x-7)^{2}$

$$
\begin{aligned}
& y=3 x^{2}-12 x+5(G F) \\
& y-5=3 x^{2}-12 x \\
& y-5=3\left(x^{2}-4 x\right) \\
& y-5+12=3\left(x^{2}-4 x+4\right) \\
& y+7=3(x-2)^{2} \\
& \frac{1}{3}(y+7)=(x-2)^{2}(T F)
\end{aligned}
$$

15. Place the following functions in both standard and transformational form:

$$
\begin{aligned}
& \text { a) } y=x^{2}+12 x+40 \\
& \text { b) } y=-2 x^{2}+8 x-10 \\
& y-40=x^{2}+12 x \\
& y+10=-2 x^{2}+8 x \\
& y-40+36=\left(x^{2}+12 x+36\right) y+10=-2\left(x^{2}-4 x\right) \\
& y-4=(x+6)^{2} \quad y+10-8=-2\left(x^{2}-4 x+4\right) \\
& \text { (SF) } y=(x+6)^{2}+4 \quad y+2=-2(x-2)^{2} \\
& \text { (SF) } y=(x+6)^{2}+4 \quad \text { (SF) } y=-2(x-2)^{2}-2 \\
& \text { (To) }(y-4)=(x+6)^{2}\left(\text { aF } \frac{-1}{2}(y+2)=(x-2)^{2}\right. \\
& \text { c) } y=3 x^{2}+12 x \\
& \text { d) } y=-2 x^{2}+14 x-1 / 2 \\
& y=3\left(x^{2}+4 x\right) \\
& y+1 / 2=-2 x^{2}+14 x \\
& y+12=3\left(x^{2}+4 x+4\right) \quad y+1 / 2=-2\left(x^{2}-7 x\right) \\
& y+12=3(x+2)^{2} \quad y+1 / 2-98 / 4=-2\left(x^{2}-7 x+49 / 4\right) \\
& \text { (SF) } y=3(x+2)^{2}-12 \quad y+2 / 4-98 / 4=-2(x-7 / 2)^{2} \\
& \text { (To) } \frac{1}{3}(y+12)=(x+2)^{2} y^{-96 / 4}=-2(x-7 / 2)^{2} \\
& \left.\begin{array}{l}
\text { (SF) } \left.y=-2(x-7 / 2)^{2}+24\right\} \text { honest } \\
\text { (To) }-\frac{1}{2}(y-24)=(x-7 / 2)^{2}
\end{array}\right\}
\end{aligned}
$$

