(3) $1^{\text {st }}$ Toss $\partial^{\text {nd }}$ Toss $3^{\text {rd }}$ Toss Outcomes
a)

HHN
HHT
HTH
HTT
THH
THT
TTH
TTT
b) $\frac{1}{8}$
c) $\frac{3}{8}$
d) $\frac{2}{8}=\frac{1}{4}$

Solutions \Rightarrow Probability Review
1.
a)
$\begin{aligned} P(\text { ace }) & =\frac{4}{52} \\ & =\frac{1}{13}\end{aligned}$
b) P (notace)
$=1-P($ ace $)$
$=1-\frac{4}{52}$
$=\frac{52}{52}-\frac{4}{52}$
$=\frac{48}{52}$
$=\frac{12}{13}$
C)

$$
\begin{aligned}
& P(\text { diamond })=\frac{13}{52} \\
& =\frac{1}{4} \\
& \text { d) } \\
& P(\text { red card })=\frac{26}{52} \\
& =\frac{1}{2}
\end{aligned}
$$

e) $P(4$ of spades $)=\frac{1}{52}$

$$
\text { 2a) } \begin{aligned}
P(\text { blue }) & =\frac{3}{18} \\
& =\frac{1}{6}
\end{aligned}
$$

c) P (green or red)

$$
\begin{gathered}
=P(\text { green })+P(\text { red }) \\
=\frac{6}{18}+\frac{4}{18} \\
=\frac{10}{18} \\
=\frac{5}{9}
\end{gathered}
$$

b) P (blue or green)
$=P(b l u e)+P($ green $)$
$=\frac{3}{18}+\frac{6}{18}$

$$
\begin{aligned}
& =\frac{9}{18} \\
& =\frac{1}{2}
\end{aligned}
$$

d) P (blue or black)

$$
\begin{aligned}
& =P(\text { blue })+P(\text { black }) \\
& =\frac{3}{18}+\frac{5}{18} \\
& =\frac{8}{18} \\
& =\frac{4}{9}
\end{aligned}
$$

3.

Outcomes

a) The possible outcomes are
b) $P(2$ heads followed by \mid tail $)=\frac{1}{8}$
c) $P(2$ heads and a tail $)=\frac{3}{8}$
d) $P(3$ coins the same $)=\frac{2}{8}$

$$
=\frac{8}{\frac{1}{4}}
$$

4a) Throwing a $4 /$ with the first die and a 6 with the second \Rightarrow independent
b) Picking a heart or a diamond from a deck of cards \Rightarrow mutually exclusive.
c) Drawing a spade and a heart from the same deck without replacing the card first drawn \Rightarrow dependent
d) Picking the winner of the Grey Cup and Stanley Cup \Rightarrow independent
e) Rolling a 3 or an odd number on a die \rightarrow mutually inclusive.
f) Choosing a black marble and a red marble if the marbles are put back in the bag each time \Rightarrow independent.
g) Choosing a diamond or ared card \rightarrow mutually inclusive.

5

$$
\text { a) } \begin{aligned}
& P(\text { red and rolling 6) } \\
= & P(\text { red }) \times P(\text { rolling } 6) \\
= & \frac{26}{52} \times \frac{1}{6} \\
= & \frac{1}{2} \times \frac{1}{6} \\
= & \frac{1}{12}
\end{aligned}
$$

b)

$$
\begin{aligned}
& P(\text { spade and rolling 4) } \\
& =P(\text { spade } \times P(\text { rolling 4) } \\
& =\frac{13}{52} \times \frac{1}{6} \\
& =\frac{1}{4} \times \frac{1}{6} \\
& =\frac{1}{24}
\end{aligned}
$$

C) P (face card and rolling less than 3)

$$
\begin{aligned}
& =P(f . c) \times P(<3) \\
& =\frac{12}{52} \times \frac{2}{6} \\
& =\frac{3}{13} \times \frac{1}{3} \\
& =\frac{3}{39} \text { d) } P(\text { not black and not rolling a 4) } \\
& =\frac{1}{13} \\
& =P(\text { not black }) \times P(\text { not rolling } 4) \\
& =\frac{1}{2} \times \frac{5}{6} \\
& =\frac{5}{12}
\end{aligned}
$$

6.

a)

$$
\begin{aligned}
& \text { P(green and green) } \\
& =P(\text { green }) \times P(\text { green } ~ \text { green }) \\
& = \\
& \frac{7}{15} \times \frac{6}{14} \\
& =\frac{7}{15} \times \frac{3}{7} \\
& =\frac{21}{105} \\
& =\frac{1}{5}
\end{aligned}
$$

b) $P($ green and blue and red)

$$
\begin{aligned}
& \text { green and blue and red) } \\
& =P(\text { green }) \times P(\text { blue|green } \times P(\text { red } / \text { green } \text { blue }) \\
& =\frac{7}{15} \times \frac{5}{14} \times \frac{3}{13} \\
& =\frac{105}{2730} \\
& =\frac{1}{26} \\
& \begin{aligned}
\text { C) } & P(\text { blue and blue and blue and blue and blue }) \\
= & P(b) \times P(b \mid b) \times P(b \mid 2 b) \times P(b \mid 3 b) \times P(b \mid 4 b)
\end{aligned} \\
& =\frac{5}{15} \times \frac{4}{14} \times \frac{3}{13} \times \frac{2}{12} \times \frac{1}{11} \\
& =\frac{1}{3} \times \frac{2}{7} \times \frac{3}{13} \times \frac{1}{6} \times \frac{1}{11} \\
& =
\end{aligned}
$$

7.

a)

$$
\begin{aligned}
& P(\text { odd or 3) } \\
& =P(\text { odd })+P(3)-P(\text { odd and 3) } \\
& =\frac{3}{6}+\frac{1}{6}-\frac{1}{6} \\
& =\frac{4}{6}-\frac{1}{6} \\
& =\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

b)

$$
\begin{aligned}
& P(\text { even or number greater than 4) } \\
& =P(\text { even }+P(\#>4) \text { Pleven and } \#>4) \\
& =\frac{3}{6}+\frac{2}{6}-\frac{1}{6} \\
& =\frac{5}{6}-\frac{1}{6} \\
& =\frac{4}{6} \\
& =\frac{2}{3} \\
&
\end{aligned} \begin{aligned}
= & P(6 \text { or } 4) \\
& =\frac{1}{6}+\frac{1}{6} \\
& =\frac{2}{6} \\
& =\frac{1}{3}
\end{aligned}
$$

d) $P($ greater than 3 or less than 4$)$

$$
\begin{aligned}
& \text { P(greater than } 3 \text { or less than 4) } \\
& =\begin{array}{c}
\frac{3}{6}=\frac{3}{6} \\
= \\
=\frac{6}{6} \\
=
\end{array}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \text { Pleven or odd) } \\
& =P(\text { even })+P(\text { odd }) \\
& =\frac{3}{6}+\frac{3}{6} \\
& =\frac{6}{6} \\
& =1 \text { CERTAIN! }
\end{aligned}
$$

8. 50 total students

- 18 take Chorus
- 26 take Band
- 2 take both Chorus and Band

Conclusion: $18-2=16$ take only Chorus $26-2=24$ take only Band.

$$
50-16-24-2=8 \text { do not }
$$ take either Chorus or Band

a) Venn Diagram

b) 8 students are notenrolled in either Chorus or Band.
C)

$$
\text { i) } \begin{aligned}
P(\text { band }) & =\frac{26}{50} \\
& =\frac{13}{25}
\end{aligned}
$$

ii)

$$
\text { i) } \begin{aligned}
& P(n o t \text { band }) \\
= & 1-P(\text { band }) \\
= & 1-\frac{26}{50} \\
= & \frac{50}{50}-\frac{26}{50} \\
= & \frac{24}{50} \\
= & \frac{12}{25}
\end{aligned}
$$

iii) P (band or chorus)

$$
\begin{aligned}
& =\frac{18}{50}+\frac{26}{50}-\frac{2}{50} \\
& =\frac{44}{50}-\frac{2}{50} \\
& =\frac{42}{50} \text { or } \frac{21}{25}
\end{aligned}
$$

iv) P (band andcherus)

$$
=\frac{\frac{2}{50}}{\frac{1}{25}}
$$

9.a) P (goalie and goalie)

$$
\begin{aligned}
=P(\text { goalie }) & \times P(\text { Paalie goalie }) \\
= & \frac{5}{30} 29 \\
= & \frac{1}{5} \times \frac{5}{29} \\
= & \frac{5}{145} \\
= & \frac{1}{29}
\end{aligned}
$$

b) P (forward and forward)

$$
\begin{aligned}
& =P \text { (forward) } \times P \text { (forward /forward) } \\
& \frac{10}{30} \times \frac{9}{29} \\
& =\frac{1}{3} \times \frac{9}{29} \\
& =\frac{9}{87} \\
& =\frac{3}{29}
\end{aligned}
$$

c) P (forward and defenseman)

$$
\begin{aligned}
& =P(\text { forward }) \times P(\text { defenseman } / \text { forward }) \\
& \begin{array}{c}
=\frac{1}{3} \times \frac{14}{29} \\
=\frac{14}{87}
\end{array}
\end{aligned}
$$

d) P (goalie and forward)
$=\frac{1}{5} \times \frac{10}{29}$
$=\frac{10}{145}$
$=\frac{2}{29}$
e) P (defensemen and goalie)
$=P($ defensemen $) \times \quad 14 \times 6($ goalie /defenseman $)$
$\frac{14}{30} \times \frac{6}{29}$
$=\frac{7}{15} \times \frac{6}{29}$
10.
a)

$$
\begin{aligned}
& \text { P(black or even) } \\
& =P\left(\text { black }+\frac{P(\text { even })-P(\text { black and even })}{=} \begin{array}{l}
\frac{6}{18}+\frac{3}{18}-\frac{3}{18} \\
=\frac{15}{18}-\frac{3}{18} \\
=\frac{12}{18} \\
=\frac{2}{3}
\end{array}\right.
\end{aligned}
$$

b) $P($ green or 4)

$$
\begin{aligned}
& P(\text { green or } 4) \\
& =P(\text { green })+P(4)-P(\text { green and } 4) \\
& =\frac{6}{18}+\frac{3}{18}-\frac{1}{18} \\
& =\frac{9}{18}-\frac{1}{18} \\
& =\frac{8}{18} \\
& =\frac{4}{9}
\end{aligned}
$$

C)

$$
\begin{aligned}
& \text { P(black or blue) } \\
& =P(\text { black })+P \text { (blue) } \\
& =\frac{1}{3}+\frac{1}{3} \\
& =\frac{2}{3} .
\end{aligned}
$$

d) P (blue or black or green)

$$
\begin{aligned}
& =P(\text { blue })+P(\text { black })+P\left(\begin{array}{l}
\text { black or green } \\
=\frac{1}{3}
\end{array}+\frac{1}{3}+\frac{1}{3}\right. \\
& = \\
& =\frac{3}{3} \\
& =1-\text { CERTAIN! }
\end{aligned}
$$

e) P (black or greater than 3)

$$
\begin{gathered}
=P(\text { black }) P(>3)-P(\text { black and }>3) \\
=\frac{6}{18}+\frac{9}{18}-\frac{3}{18} \\
=\frac{15}{18}-\frac{3}{18} \\
=\frac{12}{18} \\
=\frac{2}{3}
\end{gathered}
$$

$\begin{aligned} & \text { g) } P(\text { blue or odd }) \\ &==\frac{6}{18}+\frac{9}{18}-\frac{3}{18} \\ &= \frac{15}{18}-\frac{3}{18} \\ &= \frac{12}{18} \\ &=\frac{2}{3}\end{aligned}$

