Acid - Base Theories

Arrhenius Theory of Acids and Bases

- acids are hydrogen-containing compounds that ionize in aqueous solutions to give $\boldsymbol{H}^{\!\scriptscriptstyle +}$
- bases ionize to give OH ions

Monoprotic Acid - one hydrogen will ionize Ex. HNO₃

<u>Diprotic Acid</u> - two hydrogens will ionize Ex. H₂SO₄

<u>Triprotic Acid</u> - three hydrogens will ionize Ex. H₃PO₄

Advantage: it explained neutralization as H⁺ and OH⁻ combining to give H₂O

Disadvantage: not all hydrogen containing substances have acid properties (i.e., CH₄) and not all bases have OH⁻ (NH₃).

BRONSTED - LOWRY THEORY OF ACIDS & BASES

Bronsted-Lowry Acids and Bases

A new theory was needed because:

- (i) not all acid/base reactions involve water.
- (ii) not all bases contain hydroxide ions (Na₂CO₃, NH₃).

<u>Bronsted - Lowry Acid</u> - a proton (hydrogen-ion) donor <u>Bronsted - Lowry Base</u> - a proton (hydrogen-ion) acceptor

- acids lose a proton to a water molecule (H⁺ is a proton!)

Ex.
$$HCl_{(1)} + H_2O_{(1)} \longleftrightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$$

hydronium ion
(water molecule gains a proton)

- bases gain a proton from a water molecule

Ex.
$$H_2O + NH_{3(aq)} \longleftrightarrow OH_{(aq)}^+ + NH_{4(aq)}^+$$

(H₂O acts as an acid, NH₃ acts as a base)

However water does not have to be present in order to have a proton exchange.

Ex.
$$HCl_{(g)} + NH_{3(g)} \longleftrightarrow NH_{4(aq)}^{+} + Cl_{(aq)}^{-}$$

HCl donates a proton (acid) NH₃ accepts a proton (base)

<u>amphoteric (amphiprotic) -</u> substance that can act as a Bronsted-Lowry acid in some reactions and a Bronsted-Lowry base in other reactions.

Conjugate Acid-Base Pairs

Acid-Base reactions are at equilibrium!

(Look at forward reaction and reverse reaction)

- Every acid-base reaction at equilibrium has two acids and two bases.
- Acid on 'product' side is formed by addition of proton to base on 'reactant' side
- Base on 'product' side is formed by removal of a proton from acid on 'reactant' side

Conjugate acid-base pair

A pair of substances that differ by only a proton

Ex

LEWIS THEORY OF ACIDS & BASES

Lewis Acids and Bases

Lewis Acid - accepts a pair of electrons

Lewis Base - donates a pair of electrons

hydrogen ion + hydroxide ion

Homework

Water Equilibrium

Conductivity is due to the presence of ions. For water:

$$H_2O_{(l)} <==> H^+_{(aq)} + OH^-_{(aq)}$$

- therefore $K = [\underline{H}^+] [\underline{OH}^-]$ is very small $[\underline{H}_2O]$
- slight conductivity shows that equilibrium greatly favors water molecules (less than 2 H⁺ per billion water)
- therefore the concentration of water in pure water and in dilute aqueous solutions is essentially constant and can be combined with the equilibrium constant to produce a new constant called the *Ion Product Constant*

Ionization Constant for water (ion product constant)

$$K_w = [H^+] [OH^-] = 1.0 \times 10^{-14}$$
 at SATP

Since
$$[H^+]$$
 and $[OH^-]$ are found in 1:1 ratio $(H_2O_{(1)} <==> H^+_{(aq)} + OH^-_{(aq)})$

 $[H^{+}_{(aq)}] = [OH^{-}_{(aq)}] = 1.0 \text{ x } 10^{-7} \text{ mol/L in } \mathbf{neutral} \text{ solutions.}$

<u>Arrhenius's Theory</u> - acid is a substance that ionizes water t produce H⁺ ions.

- additional ions produced by the acid increases the H⁺ concentration in the water. (more acid, more H⁺)

Therefore acids always have a $[H^+] > 10^{-7}$ mol/L

Basic solutions produce a [OH-] greater than 10-7 mol/L

K_w can be used to calculate either [H⁺] or [OH⁻]

since
$$\mathbf{K}_{\mathbf{w}} = [\mathbf{H}^+] [\mathbf{OH}^-]$$
 then $[\mathbf{H}^+] = \mathbf{K}_{\mathbf{w}} / [\mathbf{OH}^-]$
and $[\mathbf{OH}^-] = \mathbf{K}_{\mathbf{w}} / [\mathbf{H}^+]$

pH and pOH

$$pH = -log[H^{+}_{(aq)}]$$

$$pOH = -log[OH_{(aq)}]$$

$$[H^{+}_{(aq)}] = 10^{-pH}$$

$$[OH^{-}_{(aq)}] = 10^{-pOH}$$

Ex. Calculate the pH of a solution where $[H^{+}_{(aq)}] = 3.24 \times 10^{-4} M$.

Ex. Calculate the concentration of hydroxide ions in a solution with a pOH of 10.14.

$$\begin{bmatrix}
 OH_{(aq)} &= 10^{-pOH} \\
 OH_{(aq)} &= 10^{-10.14}
 \end{bmatrix}
 \begin{bmatrix}
 OX &= 10.14 \\
 OH_{(aq)} &= 7.2 \times 10^{-11} M
 \end{bmatrix}$$

#11,12 p.599 #13,14 p.600 #15,16 p.601

#17-21 p.604

$$H^+$$
 H
 O
 H
 O
 H

Write ionic equations for each of the following substances reacting with water:

a) HNO_{3(aq)} forms an acidic solution

b) HSO_{4 (aq)} forms a basic solution

c) H₂PO_{4 (aq)} forms a basic solution

d) NH₄ (aq) forms an acidic solution