Binomial Expansion of $(x-y)^{n}$

To expand $(x-y)^{n}$, it is helpful to rewrite the expression as $(x+(-y))^{n}$ and follow the same procedure as you used in the previous lesson-with the addition of BRACKETS! $2,4,6,8$
Recall that a negative term raised to an EVEN exponent will result in positive answer. Recall that a negative term raised to an ODD exponent will result in a negative answer. $1,3,5,7,9$
If we use the above rules to expand a binomial in the form $(x-y)^{n}$, the proper "sign" will result in front of each term.

Example 1

Expand $(x-2)^{4}=(\underline{x}+(-2))^{4}$
Row 4

Solution

$$
a=x
$$

$$
b=-2
$$

Rewrite the expression as: $(x+(-2))^{4}$, and complete as usual...
$={ }_{4} \mathrm{C}_{0}(\mathrm{x})^{4}(-2)^{0}+{ }_{4} \mathrm{C}_{1}(\mathrm{x})^{3}(-2)^{1}+{ }_{4} \mathrm{C}_{2}(\mathrm{x})^{2}(-2)^{2}+{ }_{4} \mathrm{C}_{3}(\mathrm{x})^{1}(-2)^{3}+{ }_{4} \mathrm{C}_{4}(\mathrm{x})^{0}(-2)^{4}$
$=(1)\left(x^{4}\right)(1)+(4)\left(x^{3}\right)(-2)+(6)\left(x^{2}\right)(4)+(4)\left(x^{1}\right)(-8)+(1)(1)(16)$
$=1 x^{4}-8 x^{3}+24 x^{2}-32 x^{1}+16$
Notice how the signs alternate from positive to negative!!!

ASSIGNMENT
Expand each of the following binomials using the procedure indicated above:
a) $(x-3)^{5}$
b) $(x-4)^{6}$
c) $(x-2)^{4}$
d) $(x-y)^{3}$
a) $(x-3)^{5} \rightarrow(\underline{x}+(-3))^{5}$

Row 5

$$
a=x
$$

$$
b=-3
$$

$$
\begin{aligned}
& { }_{5} c_{0}\left(x^{5}\right)^{5}(-3)^{0}+{ }_{5} c_{1}(x)^{4}-(3)^{1}+{ }_{5} c_{5}(x)^{3}(-3)^{0}+{ }_{5} c_{3}(x)^{2}(-3)^{3}+{ }_{5} c_{4}\left(x^{1}\right)(3)^{4}+c_{5}\left(x^{0}\right)^{5}(-3)^{5} \\
& (1)\left(x^{5}\right)(1)+(5)\left(x^{4}\right)(-3)+(10)\left(x^{3}\right)(9)+(10)\left(x^{0}\right)(-2)+(5)(x)(81)+(1)(1)(-2 B) \\
& x^{5}-15 x^{4}+90 x^{3}-270 x^{2}+405 x-243
\end{aligned}
$$

d) $(x-y)^{3} \rightarrow(\underline{x}+(-y))^{3}$

Row 3

$$
a=x
$$

$$
b=-y
$$

$$
\begin{aligned}
& { }_{3} C_{0}(x)^{3}(-y)^{0}+{ }_{3} C_{1}(x)^{2}(-y)^{\prime}+{ }_{3} C_{2}\left(x^{\prime}\right)(-y)^{2}+{ }_{3} C_{3}(x)^{0}(-y)^{3} \\
& (1)\left(x^{3}\right)(1)+(3)\left(x^{2}\right)(-y)+(3)\left(x^{\prime}\right)\left(y^{2}\right)+(1)(1)\left(-y^{3}\right) \\
& x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

