Problem of the Week
 Grade 11 and 12

A Simple System of Equations?

Solution

Problem

If $2^{3 x}=16^{y+1}$ and $2 x=5 y-17$, determine the value of $x+y$.

Solution 1

For this solution we will attempt to answer the question only. We will not determine the values of x and y that generate the sum.

$$
\left.\begin{array}{rl}
2^{3 x} & =16^{y+1} \\
2^{3 x} & =\left(2^{4}\right)^{y+1} \\
2^{3 x} & =2^{4 y+4} \\
\therefore \quad 3 x & =4 y+4 \\
\text { But } \quad 2 x & =5 y-17 \tag{2}\\
(1)-(2) & x
\end{array}\right)=-y+21 .
$$

$\therefore x+y=21$. Notice that the problem only asks for $x+y$, it is not necessary to find values for x and y.

Solution 2

This solution carries on from equations (1) and (2) in solution 1 to find the values of x and y, and then determines the sum.

$$
\begin{array}{rlrl}
(1) \times 5 & 15 x & =20 y+20 \\
(2) \times 4 & 8 x & =20 y-68 \\
(3)-(4) & 7 x & =88 \\
x & =\frac{88}{7} \\
\text { Substitue in }(2) & 2\left(\frac{88}{7}\right) & =5 y-17 \\
\text { Multiply by } 7 & 176 & =35 y-119 \\
295 & =35 y \\
y & =\frac{295}{35}=\frac{59}{7} \\
\therefore x+y & =\frac{88}{7}+\frac{59}{7}=\frac{147}{7}=21
\end{array}
$$

As before (but with much more work) $x+y=21$.

