Adding & Subtracting Radicals

 To add or subtract radicals, they must be like radicals. For radicals to be like radicals, they must have the same radicand!

For Example:

$$\sqrt{2}$$
 $6\sqrt{2}$ $-\sqrt{2}$ $\frac{1}{2}\sqrt{2}$ Like Radicands, therefore like radicals

$$\sqrt{2}$$
 $2\sqrt{4}$ $-2\sqrt{7}$ $-\frac{1}{2}\sqrt{11}$ Unlike Radicands, therefore unlike radicals

#1
$$\sqrt[3]{2} + \sqrt[5]{2}$$

= $(3+5)\sqrt{2}$
= $8\sqrt{2}$
 $\sqrt[7]{3} - \sqrt[4]{3}$
#2 = $(7-4)\sqrt{3}$
= $3\sqrt{3}$

#3 $3\sqrt{2} - 2\sqrt{3} + 4\sqrt{2} + 5\sqrt{3}$

** Group like radicals**

$$=7\sqrt{2}+3\sqrt{3}$$

#4
$$5\sqrt{8} - \sqrt{27} + \sqrt{50} - 2\sqrt{12}$$

** Simplify each into lowest terms**

$$= 5\sqrt{4} \times 2 - \sqrt{9} \times 3 + \sqrt{25} \times 2 - 2\sqrt{4} \times 3$$

$$= (5 \times 2)\sqrt{2} - 3\sqrt{3} + 5\sqrt{2} - (2 \times 2)\sqrt{3}$$

$$= 10\sqrt{2} - 3\sqrt{3} + 5\sqrt{2} - 4\sqrt{3}$$

$$= 15\sqrt{2} - 7\sqrt{3}$$