## Addiliny 2 Subtractiny Radicals

- To add or subtract radicals, they must be like radicals. For radicals to be like radicals, they must have the same radicand!

For Example:
$\sqrt{2}$
$-\sqrt{2}$
$\frac{1}{2} \sqrt{2}$

Like Radicands, therefore like radicals
$\sqrt{2}$
$2 \sqrt{4}$
$-2 \sqrt{7}$
$-\frac{1}{2} \sqrt{11}$
Unlike Radicands, therefore unlike radicals
\#1
(3) $\sqrt{2}+(5) \sqrt{2}$
$=(3+5) \sqrt{2}$
$=8 \sqrt{2}$
(7) $\sqrt{3}-(4) \sqrt{3}$
$\# 2=(7-4) \sqrt{3}$
$=3 \sqrt{3}$
\#3

## $3 \sqrt{2}-2 \sqrt{3}+4 \sqrt{2}+5 \sqrt{3}$

** Group like radicals**
$=7 \sqrt{2}+3 \sqrt{3}$
\#4

$$
\underset{4 \times 2}{5 \sqrt{8}}-\underset{9 \times 3}{\sqrt{27}}+\underset{25 \times 2}{\sqrt{50}}-2 \sqrt{12}
$$

** Simplify each into lowest terms**

$$
\begin{aligned}
& =5 \sqrt{4 \times 2}-\sqrt{9 \times 3}+\sqrt{25) \times 2}-2 \sqrt{4 \times 3} \\
& =(5 \times 2) \sqrt{2}-3 \sqrt{3}+5 \sqrt{2}-(2 \times 2) \sqrt{3} \\
& =10 \sqrt{2}-3 \sqrt{3}+5 \sqrt{2}-4 \sqrt{3} \\
& =15 \sqrt{2}-7 \sqrt{3}
\end{aligned}
$$

