Matrices

Matrix - a rectangular array of numbers enclosed in parentheses

Example:

$$\begin{pmatrix} 2 & 1 & 13 \\ 6 & -2 & 8 \end{pmatrix} \qquad 2 \times 3$$

Each number in a matrix is called an "entry".

A matrix is made up of "rows" and "columns".

The dimensions of a matrix state the size of it.

ROWS X COLUMNS

$$\begin{pmatrix}
2 & 3 & -4 \\
1 & -2 & 5 \\
0 & 4 & 1
\end{pmatrix}$$

The dimensions of the above matrix are: 3×3 The entries in row 2 are: 1, -2, 5The entries in column 3 are: -4, 5, 1The entry in row 2 column 3 is: 5

MATRIX OPERATIONS

Adding & Subtracting Matrices

To add and subtract matrices the *dimensions* of each matrix *must* be the *same*.

$$\begin{pmatrix} -3 & 5 \\ 2 & -4 \end{pmatrix} - \begin{pmatrix} 7 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -10 & 5 \\ -1 & -8 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 4 \\ 1 & 6 \end{pmatrix} + \begin{pmatrix} 4 & 3 \\ -2 & 5 \end{pmatrix} = \begin{pmatrix} 6 & 7 \\ -1 & 1 \end{pmatrix}$$

$$X + \begin{pmatrix} -3 & 4 \\ 5 & 7 \end{pmatrix} = \begin{pmatrix} 2 & -8 \\ 3 & -2 \end{pmatrix}$$

$$X = \begin{pmatrix} 3 & -8 \\ 3 & -\lambda \end{pmatrix} - \begin{pmatrix} -3 & 4 \\ 5 & 7 \end{pmatrix}$$

$$X = \begin{pmatrix} 5 & -1\lambda \\ -\lambda & -9 \end{pmatrix}$$

Scalar Multiplication

$$3 \quad \begin{pmatrix} 5 & -2 \\ 4 & 1 \\ -7 & 0 \end{pmatrix} = \begin{pmatrix} 15 & -6 \\ 12 & 3 \\ -21 & 0 \end{pmatrix}$$

Multiply through the matrix!

$$\mathbf{A} = \begin{pmatrix} 3 & -1 \\ 0 & 4 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} -3 & 0 \\ -1 & -2 \end{pmatrix}$$

Find 3A + 2B

$$3[3-1]+3[0]$$
= $[0]$

$$= \begin{bmatrix} 0 & 19 \\ 4 & -3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 9 \end{bmatrix}$$

$$= \begin{bmatrix} 6 & 19 \\ d & -1 \end{bmatrix}$$

Matrix Multiplication

Steps:

- 1. State the dimensions of each matrix.
- 2. Determine if it is possible to multiply them.
- 3. Set up the "Template".
- 4. Multiply "Row x Column"
- 5. Simplify

Matrix Multiplication

In order to multiply matrices, the number of columns in the 1st matrix must equal the number of rows in the 2nd matrix.

Product Dimensions:

(# rows 1st) x (# columns 2nd)

Ex.
$$\begin{pmatrix} 2 & 7 \\ 3 & 5 \end{pmatrix}$$
 x $\begin{pmatrix} 6 & -2 & 0 & -1 \\ 7 & 1 & 5 & 4 \end{pmatrix} = \begin{bmatrix} - & - & - \\ - & - & - \end{bmatrix}$

Always multiply a row through a column, adding the products as you go.

Ex.

$$\begin{pmatrix} 5 & 1 & -1 \\ 6 & 2 & 4 \end{pmatrix} \qquad x \qquad \begin{pmatrix} 4 & -1 \\ 2 & -5 \\ -3 & 0 \end{pmatrix} = \begin{bmatrix} \frac{35}{6} & -\frac{10}{6} \\ \frac{16}{6} & \frac{16}{6} \end{bmatrix}$$

Matrix Multiplication

$$\begin{pmatrix}
2 & 1 \\
3 & 0 \\
2 & 1
\end{pmatrix}
\begin{pmatrix}
0 & 2 \\
1 & 4
\end{pmatrix} = \begin{bmatrix}
1 & 8 \\
0 & 6 \\
1 & 8
\end{bmatrix}$$

$$3 \times 3 \quad 3 \times 3$$

3.
$$(2 \quad 3 \quad 5 \quad 7) \begin{pmatrix} 5 \\ 0 \\ 2 \\ 0 \end{pmatrix} = \begin{bmatrix} 20 \\ 1 \\ 4 \\ 1 \end{bmatrix}$$

What would the entry for r3c4 be in the product?

4.
$$\begin{pmatrix}
2 & 3 & 0 & 6 \\
0 & 2 & 8 & 2 \\
\hline
0 & 3 & 0 \\
8 & 4 & 4 & 8 \\
4 & 7 & 1 & 9
\end{pmatrix}
\begin{pmatrix}
6 & 2 & 0 & 2 \\
2 & 8 & 8 & 1 \\
1 & 3 & 9 & 5 \\
5 & 0 & 4 & 3
\end{pmatrix}
\begin{pmatrix}
6 & 2 & 0 & 2 \\
1 & 3 & 9 & 5 \\
5 & 0 & 4 & 3
\end{pmatrix}
\begin{pmatrix}
6 & 2 & 0 & 2 \\
3 & 6
\end{pmatrix}$$

Homework

Finish Sheet + Study For Quiz