Series & Sequence

Sequence: A list of numbers with a pattern. The list can be finite: 1, 2, 3, 4, 5. or infinite: 1, 2, 3, 4, 5... The numbers have a rule or formula that defines them.

Series: The sum of the terms of a sequence. The sum is usually finite: 1+2+3+4+5. However it could be infinite: 2+4+8+16+... You can find the sum of many finite series and certain types of infinite series by using formulas.

Sequences Fferona " "common ratio "

"Common difference"
Arithmetic
2, 5, 8, 11, 14, 17

Other 1, 2, 4, 7, 11, 16. 1, 4, 9, 16, 25.

Sequences

Arithmetic and Geometric sequences each have their own *EXPLICIT* formulas but many types of sequences can be defined by a *RECURSIVE* formula.

A *recursive formula* can be used to define a sequence. A recursive formula defines each term with reference to the previous term or terms

In any sequence, t_n is the given term, t_{n-1} is the term before it, t_{n+1} is the term after it. It looks like this:

Recursive Rules

Ex: 2, 5, 8, 11, 14, 17

- The first term is 2
- Any given term is equal to the term before it plus 3

Therefore:

$$t_1 = 2$$

$$t_n = t_{n-1} + 3$$

 $t_n = t_{n-1} + 3$ \rightarrow recursive rule

Find the recursive formula for the following

#1. 13, 7, 1, -5, -11.., -

$$t_{n} = t_{n-1} - 6$$
 $t_{n} = t_{n-1} - 6$
 $t_{n} = t_{n-1} - 6$
 $t_{n} = t_{n-1} - 6$

#2. 4, 9, 14, 19, 24...

 $t_{n} = t_{n-1} + 5$

#4. 7, 26, 45, 64, 83....
$$t_{n} = t_{n-1} + 19$$

$$t_n = t_{n-1} + 19$$

What About???

#5. 2, 4, 8, 16, 32.., 64

$$t_1 = 3$$
 $t_2 = 3(t_3)$
 $t_3 = 3(t_3) = 64$

#6. 1, 4, 13, 40, 121...

 $t_4 = 1$
 $t_6 = 3(t_3) + 1$
 $t_6 = 3(t_3) + 1$
 $t_6 = 363 + 1$
 $t_6 = 364$

Homework

f)
$$t_{1}=5$$
 $t_{0}=t_{0}-1+t_{0}-3$
 $t_{3}=6$
 $t_{3}=t_{3}+t_{1}$
 $t_{3}=5+6$
 $t_{3}=11$

Arithmetic Sequences

Ex: 2, 5, 8, 11, 14

- The difference between each term is constant.
- In the sequence 2, 5, 8, 11, 14. the difference between each term is 3.
- The difference is called "d".
- The first term is called "a" or " t_1 ".
- The second term is called "t₂".
- The last term or an indicated term is called " t_n ".
- The position of a term or the number of terms is called "n".