ALGEBRA OF 3-SPACE

- Coordinate geometry that represents space in **three** dimensions
- Coordinates are in the form of an ordered triplet (x, y, z)
- Three planes exist: xy plane, xz plane, yz plane

x axis -axis coming "out of the page"

y axis - horzontal axis

z axis - vertical axis

Plotting Points in 3-Space

Types of Systems

Remember: Looking at intersecting planes!

Consistent:

<u>Independent</u>: one unique solution

Dependent: Infinite number of solutions

Inconsistent: No Solutions

3 Possible Orientations That Give No Solution...

Solving 3 x 3 Systems

REMEMBER:

- you can multiply equations by a constant
- can add & subtract 2 equations to get a new equation
- you can rearrange the order of equations

STEPS:

- 1) Eliminate one of the variables
- 2) Solve the 2 x 2 system
- 3) Use "backward substitution" to obtain a solution

I. Consistent System with a Unique Solution

Solve using algebraic techniques

$$3x - 2y = 6$$

$$5x - 9y + 5z = -36$$

$$x - 6y + 7z = -39$$

$$35x - 63y + 35z = -350$$

$$5x - 30y + 35z = -195$$

$$30x - 33y = -57$$

$$3x-3y=6$$
 $30x-30y=60$ $3x-3(9)=6$ $x-6y+7z=-39$
 $30x-33y=-57$ $(-)$ $30x-33y=-57$ $3x-18=6$ $8-(69)+7z=-39$
 $13y=117$ $3x=24$ $8-54+7z=-39$
 $y=9$ $x=8$ $-46+7z=-39$

$$3x-2(9)=6$$

 $3x-18=6$
 $3x=24$
 $x=6$

$$x-6y+7z=-39$$

 $8-69)+7z=-39$
 $8-59+7z=-39$
 $-46+7z=-39$
 $7z=7$
 $7z=1$

I. Consistent System with a Unique Solution

Solve the following system of equations using a matrix reduced to its row echelon form.

$$4x+3y-z=-7$$

$$3x-2y+3z=-10$$

$$x+y-z=-2$$

$$\begin{bmatrix} 4 & 3 & -1 & -7 \\ 3 & -3 & 3 & -10 & -10 \\ 1 & 1 & -1 & -3 & -3 & -10 \\ 2 & 2 & 1 & -5y+62 & -4 \\ 2 & 2 & 1 & -5y+61 & -4 \\ -5y+6 & 2 & 4x+3y-2 & -7 \\ 2 & 4x+3y-1 & -7 \\ 2 & 4x+3y-1 & -7 \\ 4x+6-1 & -7 \\ 4x=-10 \\ 4x=-10 \\ 4x=-3 \end{bmatrix}$$

Word Problems

The San Diego Chargers football team uses three brands of cleats each year: Nike, Adidas, and Reebok. Last year the team went through a total of 410 pairs of cleats. Nike's cost \$84/pair, Adidas \$72/pair and Reeboks \$65/pair and they spent \$31 050 on cleats last season. If Nike's cleats were used twice as much as Reeboks, how many pairs of each brand of football cleat did they use?

(Declare variables, write a system of equations and an augmented matrix to model the problem then use your TI-84 to solve.)

Let
$$x = N_1 k_0$$
Let $y = Adidas$
Let $z = Reebook$
 $x + y + z = 410$
 $x + 7ay + 65z = 31050$
 $x - 3z = 0$

They used 180 pairs [1 0 0 | 180]
of Nike cleak, 140 pairs [0 1 0 | 140]
of Reebook.

II. Consistent System with a Dependent Solution (must create a parametric solution)

$$x - 3y - 7z = -13$$

$$3x + 2y + z = 2$$

$$3 x-14y-29z=-54$$

$$(3) + 2y + 2 = 2$$

 $(4) - 114 - 227 = -41$

(a)
$$-44y-88z=-164$$

(b) $-44y+88z=-164$
(c) $-11y=-41+32t$
 $-11y=-41-22t$

$$x-3y-7z=-13$$

$$x - 3\left(\frac{41 - 32t}{11}\right) - 7t = -13$$

$$11x - 133 + 66t - 77t = -143$$

$$11x = -30 + 11t$$

$$x = -30 + 11t$$

$$11$$

Don't forget about Matrices:

- Basic operations
- Determinants
- Identity Matrix
- Inverse Matrices
- Operations with TI-83
- Row Reduced Echelon Form

$$3x+y=-3$$
 $3x+y=-3$ $3(-1)+y=-3$
 $y-x=1$ (-) $-x+y=1$ $-2+y=-3$
 $3x=-3$ $y=0$