
\#1 $\quad 16 \mathbf{x}^{3}+8 \mathbf{x}^{2}+4 \mathbf{x}^{\prime}$ $4 x^{\prime}\left(4 x^{2}+2 x^{\prime}+1\right)$
$\# 2 \quad 6 \mathbf{x y}+4 \mathbf{x}+15 \mathbf{y}+10$
What do you notice??

$$
\begin{aligned}
& 6 x y+4 x+15 y+10 \\
& 2 \times(3 y+2) \\
& +5(3 y+2) \\
& \text { ** There is nothing similar amongst all terms!!** }
\end{aligned}
$$

- Notice there is something similar in the first two terms, and in the last two terms.
- Let's group the common terms together, to see if we can do Factor by Grouping

$$
(3 y+2)(5(3 y+2)
$$

Brackets must be the same, to use Factor by Grouping!!*

$$
=(2 x+5)(3 y+2)
$$

Factor by Grouping

\#1 $\quad 2 \mathbf{a x}+3 \mathbf{b x}+2 \mathbf{a y}+3 \mathbf{b y}$
$x)(2 a+3 b)+y(2 a+3 b)$
$(x+y)(2 a+3 b)$
\#2 $\mathbf{a}^{2}-\mathbf{a b}+\mathbf{a c}-\mathbf{b c}$

$$
\begin{gathered}
\left(a^{\prime}\right)\left(a^{\prime}-b\right)(a-b) \\
(a+c)(a-b)
\end{gathered}
$$

\#3

$$
\begin{array}{r}
12 \mathbf{x y}-8 \mathbf{x}+42 \mathbf{y}-28 \\
2(6 x y-4 x+21 y-14)
\end{array}
$$

\#4 $\mathbf{b c}-\mathbf{a b}+\mathbf{b}^{2}-\mathbf{a c}$

$$
\begin{gathered}
b c+b^{2}-a c-a b \\
(c+b)-a(c+b) \\
(b-a)(c+b)
\end{gathered}
$$

