Series and Sequence

Arithmetic (common difference "d")

$$t_n = a + (n-1)d$$

$$S_n = \frac{n}{2}(2a + (n-1)d)$$

$$S_n = \frac{n}{2}(a + t_n)$$

Geometric (Common Ratio "r")

$$t_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$t_{n} = a + (n-1)d$$

$$t_{n} = ar^{n-1}$$

$$S_{n} = \frac{n}{2}(2a + (n-1)d)$$

$$S_{n} = \frac{a(r^{n}-1)}{r-1}$$

$$S_{n} = \frac{a}{2}(a + t_{n})$$

$$S_{n} = \frac{a}{1-r}$$

1. Identify as Arithmetic or Geometric and then find the number of

b) 2, 6, 18, ...486. **c)**
$$\frac{1}{4}$$
, $\frac{1}{2}$, 1, ... 64.

Arithmetic

$$a=-5$$
 $t_n=a+(n-1)d$
 $d=3$
 $103=-5+(n-1)(3)$
 $t_n=103$
 $108=3n-3$
 $111=3n$

$$t_{n} = ar^{-1}$$
 $t_{n} = ar^{-1}$
 $t_{n} = 486$
 $\frac{1}{2} = 3^{n-1}$

$$3^{5} = 3^{6-1}$$
 $5 = 0^{-1}$
 $6 = 0^{-1}$

c)
$$\frac{1}{4}$$
, $\frac{1}{2}$, 1, ... 64.

Geometric

$$a = \frac{1}{4}$$
 $t_n = \alpha r^{n-1}$
 $r = 3$ $\frac{64}{4} = \frac{(4)(3)^{n-1}}{4}$
 $t_n = 64$

As it aged, a maple tree produced sap according to the pattern shown in the table below.

Year	2001	2002	2003	2004
Sap (Litres)	t ₁ = 60.000	t ₂ = 57.000	$t_3 = 54.150$	t ₄ = 51.4425

a) Does the data follow an arithmetic or geometric pattern?

b) Write down a formula for t_n ?

$$t_{n} = ar^{n-1}$$

$$t_{n} = 60(0.95)^{n-1}$$

c) Assuming the pattern continues, how long will it take for the sap production to be approximately 17.5L?

$$t_{n}=17.5L$$
. $17.5=60(0.95)^{n-1}$
 $t_{n}=?$
 $t_{n}=?$
 $t_{n}=0.95^{n-1}$
 $t_{n}=?$
 $t_{n}=0.95^{n-1}$
 $t_{n}=0.95^{n-1}$
 $t_{n}=0.95^{n-1}$
 $t_{n}=0.95^{n-1}$
 $t_{n}=0.95^{n-1}$
 $t_{n}=0.95^{n-1}$

d) If the tree lives for a very long time approximately how much sap will it produce from 2001 on? (Infinite Geometric Series)

$$S_n = \frac{a}{1-r} + \frac{1}{1-r} = 0.95$$
Satisfies

$$5n = \frac{60}{1 - 0.95}$$

$$= \frac{60}{0.05}$$

$$= \frac{1200}{100}$$

8. A computer software company formed a committee of 5 people to spread the word about a new feature. Each person on the committee emailed 3 individuals (cycle 1) who were each asked to email 3 more people (cycle 2). This pattern continued and new individuals were contacted at each cycle (i.e. nobody received two emails).

a) What is the value of
$$t_1$$
? $5 \times 3 = 15$ $\alpha = 15$ [1]

b) Write down a formula for
$$t_n$$
. $t_n = \alpha r^{n-1} = (15)(3)^{n-1}$ [1]

- c) On which cycle were 32 805 people contacted? [2]
- d) Find the total number of people contacted in 4 cycles.

c)
$$\frac{39805}{15} = \frac{(13)(3)^{n-1}}{15}$$
 $\frac{3187}{15} = \frac{3^{n-1}}{15}$
 $\frac{3}{3} = \frac{3^{n-1}}{3^{n-1}}$
 $\frac{7}{8} = \frac{n-1}{15}$

$$d_{3} S_{n} = a(r^{n}-1)$$

$$r-1$$

$$S_{4} = 15(3-1)$$

$$3 - 1$$

$$S_{4} = 1000$$

$$S_{4} = 600$$

[2]