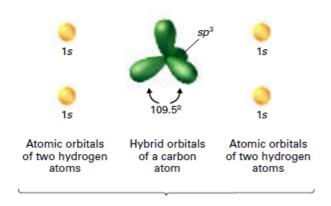
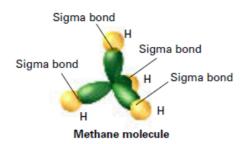

Unit 3 - Chemical Bonding

- Electron Configurations
- Octet Rule
- Electron Dot Structure
- Metallic Bonding
- Covalent Bonding
- VSEPR Theory
- Hybridization
- Polarity
- Intermolecular Forces


CH₂O


$$\begin{array}{c}
\frac{CH_{4}}{H} \\
H:C:H \\
H \\
29 \\
25 \\
1 \\
5 \\
1 \\
4
\end{array}$$

$$\begin{array}{c}
2p \\
2s \\
1 \\
2s \\
1
\end{array}$$

$$\begin{array}{c}
1 \\
2s \\
2s \\
1
\end{array}$$

$$\begin{array}{c}
3 \\
2s \\
2s \\
3 \\
3 \\
3 \\
4 \\
5p^{3} \\
5p^{3$$

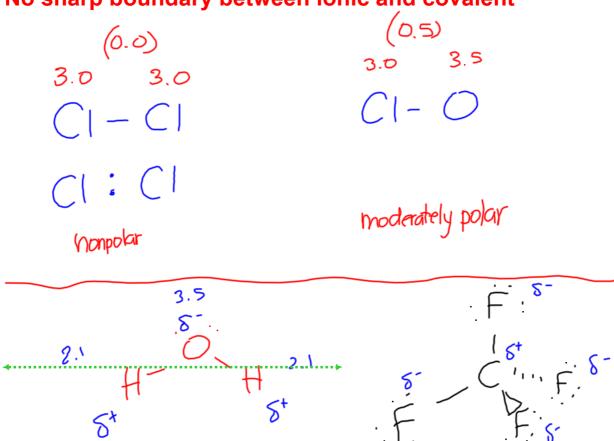


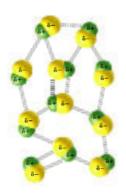
Table 8.3 Electronegativity Differences and Bond Types

Electronegativty difference range	Most probable type of bond	Example
0.0-0.4	Nonpolar covalent	H - H (0.0)
0.4-1.0	Moderately polar covalent	H - CI (0.9)
1.0-2.0	Very polar covalent	H - F (1.9)
≥ 2.0	lonic	Na ⁺ Cl ⁻ (2.1)

* No sharp boundary between ionic and covalent

Attraction Between Molecules

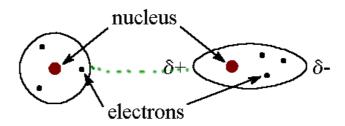
Intermolecular forces are weaker than both ionic and covalent bonds.

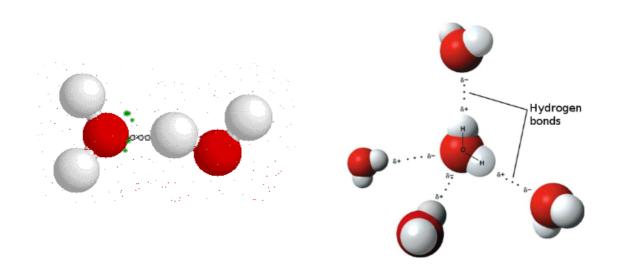

H-C!:

Van der Waals Forces

- -Weakest attractions between molecules.
- -Can be separated into two categories:

Dipole Interactions


Electrical attraction between oppositely charged regions of polar molecules.


Dispersion Forces (London Dispersion Forces)

- -weakest of all molecular interactions
- -occur between even non-polar molecules
- -caused by the motion of electrons

when moving electrons are momentarily on one side of a molecule, the electrons of the neighbouring molecule will move to the opposite side, causing a weak attraction.

Hydrogen Bonds

Hydrogen Bonds

Strong attractive forces in which a hydrogen covalently bonded to a very electronegative atom (O, N, F), is weakly bonded to an unshared electron pair of another electronegative atom.

- strongest intermolecular force
- not as strong as an ionic or covalent bond