Total Energy

Calculate the total energy change if 25.0g of water at 12.0°C is completely converted to steam at 120.°C.

$$Q_{e} = mc\Delta T$$
 $Q_{e} = (25.0g)(4.99 - c)(88.0°c)$
 $Alap = (25.0g)(4.99 - c)(88.0°c)$
 $Alap = (25.0g)(4.0.7 kJ) mol$
 $Q_{e} = J$
 $Alap = (25.0g)(4.0.7 kJ) mol$

$$Q_g = mC\Delta T$$

$$Q_g = (25.0g)(20lg \cdot c)(3.0°C)$$
=

Calorimetry

7.37 g of sodium nitrate is dissolved in 100. mL of water at an initial temperature of 16.3° C. The final temperature of the solution is 25.1° C. Calculate the molar enthalpy of solution, H_s , for sodium nitrate.

Mands
$$m = 7379$$

$$H_{5} = -\sqrt{C} \Lambda T$$

$$H_{5} =$$

Reaction Enthalpies

Major Topics

- Hess's Law
- Heats of Formation
- Multi-Step Problems

You Should Know...

- General formulas of alkanes, alkenes, alkynes, and cyclic compounds
- Aromatic compounds
- Pi bonds
- Characteristics of organic compounds

Hess's Law

$$2NO_{2(g)} \longrightarrow N_{2(g)} + 2O_{2(g)} \triangle H_r = ?$$

Calculate the standard enthalpy change for this reaction using the following information:

$$\frac{\text{Rev.O}}{\text{(4)}} \xrightarrow{\text{N21g1}} \rightarrow \text{N21g1} + 3\text{H2g1})$$

$$\frac{\text{O} \times 2}{\text{O} \times 2002g} + 7\text{H2g1} \rightarrow 2\text{NH3g1} + 4\text{H2Q2}$$

$$\frac{\text{O} \times 4}{\text{O} \times 4000} \rightarrow 4\text{H2g1} + 202g$$

$$4\text{Hr} = 1143.2 \text{KS}$$

Heats of Formation

Ex. What is the standard molar enthalpy of combustion of methane fuel?

$$CH_{4(g)} + 2O_{2(g)} \longrightarrow CO_{2(g)} + 2H_2O_{(g)}$$

Multi-Step Problems

Ex.
$$2NaHCO_{3(s)} + 129.2kJ \longrightarrow Na_2CO_{3(s)} + CO_{2(g)} + H_2O_{(g)}$$

What quantity of energy, ΔH_r , is required to decompose 100. kg of NaHCO_{3(s)}?

Chemical Equilibrium

Major Topics

- Equilibrium Law
- Le Chatelier's Principle
- Water Equilibrium

You Should Know...

- General formulas of alkanes, alkenes, alkynes, and cyclic compounds
- Aromatic compounds
- Pi bonds
- Characteristics of organic compounds

Equilibrium Law

A mixture of H_2 and I_2 is allowed to react at 448°C. When the equilibrium is established the concentrations of the participates are found to be $[H_2] = 0.46$ mol/L, $[I_2] = 0.39$ mol/L, and [HI] = 3.0 mol/L. Calculate the value of K at 448°C from these data.

Le Chatelier's Principle

$$2SO_{2(g)} + O_{2(g)} \longrightarrow 2SO_{3(g)} + energy$$

 $\Rightarrow remove SO_{3(g)}$

- \Rightarrow cool system (low T)
- ⇒decrease volume (increase pressure)

Water Equilibrium

A solution of calcium hydroxide, Ba(OH)₂, has a pH of 4.25. Calculate the pOH, concentration of hydrogen ions, concentration of hydroxide ions, and the concentration of the Ba(OH)₂ solution.