Solutions Review

- Net Ionic Equations
- Properties of Solutions
 Solute/solvent, factors affecting rate of dissolving
- Solubility
- Concentration
- Dilutions

For the following double replacement reaction, write a complete ionic equation, a net ionic equation, and identify all spectator ions present.

$$2NaOH_{(aq)} + Ca(NO_3)_{2(aq)} \longrightarrow 2NoNO_{3(aq)} + Ga(OH)_{2(s)}$$

$$2NaOH_{(aq)} + 2OH_{(aq)} + G_{(aq)}^{2+} + 2NO_{3(aq)} \longrightarrow 2NoH_{(aq)} + 2NO_{3(aq)} + 2N$$

Spectator: Nation, NO3/491

Net Ionic: 20Higgs + Gard -> Ga(DH)2(5)

Determine the concentration of a solution in which 1.89 mol of KCl is dissolved in 2.70 L of water.

$$C = ?$$
 $n = 1.89 \text{ mol}$
 $v = 2.70 \text{ L}$
 $C = \frac{1.89 \text{ mol}}{2.70 \text{ L}}$
 $C = 0.700 \text{ mol/L}$

(0.80mol/L

Determine the mass in 1.50L of a 0.80M NaNO₃ solution.

$$M = \frac{2}{3}$$

$$C = \frac{n}{V}$$

$$0.80 \, \text{mol/L} = \frac{n}{1.50 \, \text{L}}$$

Calculate the final concentraion of a solution in which 240. mL of water is added to 80.0 mL of a 2.24 mol/L solution.

$$V_i = 80.0 \text{ mL}$$
 $C_i = 2.24 \text{ mol/L}$
 $V_F = 320. \text{ mL}$
 $C_F = ?$
 $(80.0 \text{ mL})(2.24 \text{ mol/L}) = (320. \text{mL})C_F$
 $C_F = (80.0 \text{ mL})(2.24 \text{ mol/L})$
 $(320. \text{mL})$
 (52.24 mol/L)
 (53.0 mol/L)