Questions From Homework

$$\frac{x}{p(x)}$$
 $\frac{x}{-3}$ $\frac{q(x)}{-3}$ $\frac{q(x)}{-4}$ $\frac{q(x)}{-4}$ $\frac{q(x)}{-1}$ $\frac{q(x)}{-3}$ $\frac{q(x)}{-3}$ $\frac{q(x)}{-4}$ $\frac{q(x)}{-1}$ $\frac{q($

$$f(x) = 3x - 5$$
 $g(x) = 3 - 5x - x^{3}$

$$g(g(x))$$

$$= 3 - 10 + 35x + 5x^{3} - x^{4} - 10x^{3} - 31x^{3} + 30x$$

$$= 3 - 10 + 35x + 5x^{3} - (x^{4} + 10x^{3} + 31x^{3} - x^{4})$$

$$= 3 - 10 + 35x + 5x^{3} - (x^{4} + 10x^{3} + 31x^{3} - x^{4})$$

Polynomial Functions

Polynomial - an algebraic expression consisting of two or more terms. A polynomial usually contains only one variable. Within each term the variable is raised to a non-negative integer power, and is multiplied by a constant. The simplest types of polynomials are binomials (two terms) and trinomials (three terms)

Degree of a Polynomial - the greatest power to which the variable is raised; for example, the degree of the trinomial $x^4 - 2x + 5$ is 4

$$x^4 - 2x + 5$$
 is 4
3- $x^3 + 10x^5$ is 5

A polynomial function with real coefficients can be represented by

$$y = f(x) = ax^{n} + bx^{n-1} + cx^{n-2} + \dots + x^{n-2}$$

where *a*, *b*, *c*, *etc*. are real numbers. The shape of the graph of the function is affected by the value of *n* (the Degree of the Polynomial), the values of the coefficients, and whether the value of *a* is positive or negative.

Quadratics

2nd degree Polynomials.
$$y = ax^2 + bx + c$$
 (Parabolas)

When given a quadratic function we can determine several important features to help us graph the function

We already know how to find the vertex... Remember "completing the square?"

What are the **Roots** of a Function?

Remember Quadratic Functions will have

- (i) two different real roots,
- (ii) two equal real roots, or
- (iii) two complex roots.

Calculate the roots of the following Quadratic Functions...(Factor)

Calculate the *y intercept*

Calculate the vertex

$$Q = (x+3)(x+6)$$

• Vertex (complete the squain $y = x^3 + 8x + 16$ $y - 10 = x^3 + 8x + 16$ y + 4 = (x + 4)(x + 4)y = (x + 4)(x + 4)

x int

- **a** Calculate the roots of the following Quadratic Functions...(Factor)
- **b**Calculate the *y intercept*
- () Calculate the vertex

$$y = x^2 - 6x + 9$$
a) Roots (y=0)
$$0 = x^3 - 6x + 9$$

$$0 = (x-3)(x-3)$$

$$x-3=0 | x-3=0$$

$$x=3 | x=3|$$

b)
$$y_1 = x^2 - 6x + 9$$

 $y = (0)^2 - 6(0) + 9$
 $y = 9$

c> Vertex (complete the Square)

$$y = x^3 - 6x + 9$$
 $y - 9 = x^3 - 6x$
 $y - 9 = x^3 - 6x + 9$
 $y = (x - 3)(x - 3)$
 $y = (x - 3)^3$
 $y = (3, 0)$

Sketch the following function.

$$y = x^2 + 5x - 9$$

$$0 = x^3 + 5x - 9$$

$$X = -b + \sqrt{b^2 - 4ac}$$

$$X = -5 \pm \sqrt{(5)^2 - 4(1)(9)}$$

$$X = -5 \pm 7.8$$

$$X = \frac{2.8}{3}$$
 $X = \frac{-13.8}{3}$
 $X = 1.4$ $X = -6.4$

b) y int
$$(x=0)$$

 $y = x^{0} + 5x - 9$
 $y = (0)^{0} + 5(0) - 9$
 $y = -9$

c) Vertex

$$y = x^{3} + 5x - 9$$

 $y + 9^{\frac{144}{2}} \times x^{3} + 5x + \frac{35}{4}$

$$y + \frac{36}{4} + \frac{35}{4} = (x + 5)^{3}$$

$$y + \frac{61}{4} = (x + 5)^{3}$$

$$y = (x + 5)^{3} - 61$$

$$V = (-5)^{3} - 61$$

$$V = (-35)^{3} - 15.35$$

Homework