Questions From Homework

① e)
$$y = -(x+3)^3$$

 $y = -(x+3)(x+3)(x+3)$

(11) Degree
$$\Rightarrow 3^{rd}$$

(111) y int $(x=0)$
 $y = -(0+3)^3$
 $y = -37$
(11) Stretch: $\alpha = -1$

Polynomial Functions

Polynomial - an algebraic expression consisting of two or more terms. A polynomial usually contains only one variable. Within each term the variable is raised to a non-negative integer power, and is multiplied by a constant. The simplest types of polynomials are binomials (two terms) and trinomials (three terms)

Degree of a Polynomial - the greatest power to which the variable is raised; for example, the degree of the trinomial $x^4 - 2x + 5$ is 4

A polynomial function with real coefficients can be represented by

$$y = f(x) = ax^{n} + bx^{n-1} + cx^{n-2} + \dots + x^{n-2}$$

where *a*, *b*, *c*, *etc*. are real numbers. The shape of the graph of the function is affected by the value of *n* (*the Degree of the Polynomial*), the values of the cooefficients, and whether the value of *a* is positive or negative.

Cubic Functions

3rd degree Polynomials. $y = ax^3 + bx^2 + cx + d$ factored form $y = a(x - r_1)(x - r_2)(x - r_3)$

a > 0 (Positive) Starts in Q3 Ends in Q1

a < 0 (Negative) Starts in Q2 Ends in Q4

Local Maximum - is the highest point in its immediate region of x-values. This may or may not be the greatest value of the function over its entire domain.

Local Minimum - is the lowest point in its immediate region of x-values. This may or may not be the smallest value of the function over its entire domain.

Stretch
$$y = (x-2)(x+1)(x+3)$$

$$0 \text{ Roots } (y=0)$$

 $0 = (x-2)(x+1)(x+3)$
 $(x+3)(x+1)(x+3)$

(a)
$$y = (0-2)(0+1)(0+3)$$

 $y = (-3)(1)(3)$
 $y = -6$

6 Local Max
$$(x=-2)$$

 $y=(x-2)(x+1)(x+3)$
 $y=(-3-2)(-3+1)(-3+3)$
 $y=(-15)(15)(3.5)$
 $y=(-15)(15)(3.5)$
 $y=(-15)(15)(3.5)$

Local Max
$$(x=-2)$$
 $y=(x-3)(x+1)(x+3)$
 $y=(-3-3)(-3+1)(-3+3)$
 $y=(-15)(-3+1)(-3+3)$
 $y=(-15)(-3+1)(-3+3)$
 $y=(-15)(-3+1)(-3+3)$
 $y=(-15)(-3+1)(-3+3)$
 $y=(-15)(-3+1)(-3+3)$
 $y=(-15)(-3+1)(-3+3)$

Calculating Max and Min values on the TI-83

Homework