MOLAR ENTHALPY

For any system:

- an exothermic change involves a decrease in enthalpy
- ⇒gives off energy to the surroundings
- $\Rightarrow \Delta H$ is negative.
- an endothermic change involves an increase in enthalpy.
- ⇒takes in energy from the surroundings
- $\Rightarrow \Delta H$ is positive.

The enthalpies for substances undergoing phase changes have been measured experimentally. (TABLE 17.3 p. 522)

- enthalpies are reported as molar enthalpies and are expressed as kJ/mol.

Endothermic Phase Changes

- the molar enthalpy of fusion (H_{fus}) represents the quantity of heat that the substance absorbs per mole as it changes state from **solid to liquid**.
- the molar enthalpy of vaporization (H_{vap}) represents the quantity of heat that the substance absorbs per mole as it changes state from **liquid to gas**.

Exothermic Phase Changes

- the molar enthalpy of condensation (H_{cond}) represents the quantity of heat that the substance releases per mole as it changes state from **gas to liquid**
- the molar enthalpy of solidification (H_{solid}) represents the quantity of heat that the substance releases per mole as it changes state from **liquid to solid**.

$$\Delta \mathbf{H}_{\text{fus}} = - \Delta \mathbf{H}_{\text{solid}}$$

$$\Delta \mathbf{H}_{\text{vap}} = -\Delta \mathbf{H}_{\text{cond}}$$

Example

If 500. g of $CCl_2F_{2(l)}$ is vaporized at SATP, find the enthalpy change of the system ($H_{vap} = 34.99 \text{ kJ/mol}$).

$$\Delta H_{\text{vap}} = nH_{\text{vap}}$$

$$4H_{\text{vap}} = \left(\frac{500 \text{ g}}{120.9 \text{ g/g/m/s}}\right) \left(\frac{34.99 \text{ kJ}}{m_{\text{off}}}\right)$$

$$\frac{CCl_{2}F_{2}}{L_{2}(1\times1201) + (2\times35.45) + (2\times19.00)}$$

$$\frac{C_{1}}{C_{1}}$$

$$\frac{C_{1}}{20.919lmol}$$

Example

Determine the enthalpy change associated with converting 250. g of water to ice ($H_{fus} = 6.01 \text{ kJ/mol}$).

Alsolid =
$$n$$
 Hsolid

Alsolid = $\frac{250.8}{18.026}$ $\frac{-6.01 \text{ kJ}}{1900}$

Alsolid = $\frac{83.4 \text{ kJ}}{1900}$

	H _{fus} (kJ/mol)	H _{vap} (kJ/mol)
Ammonia (NH ₃)	5.65	23.4
Ethanol (C ₂ H ₃ OH)	4.60	43.5
Hydrogen (H ₂)	0.12	0.90
Methanol (CH₃OH)	3.16	35.3
Oxygen (O ₂)	0.44	6.82
Water (H₂O)	6.01	40.7
ethylene glycol (C ₂ H ₄ (OH) ₂		58.8

Heat (q)

- change in kinetic energy
- measures transfer of energy when there are temperature changes (heating or cooling)

Enthalpy (H)

- measures potential energy
- change in energy transfer when system is at constant pressure and same initial and final temperatures

Worksheet