### Homework -

#### **Chemical Reactions**

#### **IV. Single Replacement Reaction**

Reaction of an element with a compound to produce a new element and an ionic compound.

- ⇒usually occurs in aqueous solution
- ⇒reaction will only occur if the element is replacing a less reactive element (see table 11.2)

$$\frac{\text{Cu}_{(s)}^{2+} + 2\text{AgNO}_{3(aq)}}{\text{compound}} \longrightarrow 2\text{Ag}_{(s)} + \frac{\text{Cu}(NO_3)_{2(q)}}{\text{compound}}$$

PB+CI-PbCI<sub>2(s)</sub> MgSO4(a) KOH(a)

|             | Cu2+ |  |  |  |  |      |
|-------------|------|--|--|--|--|------|
|             |      |  |  |  |  | NO3- |
| high<br>(a) |      |  |  |  |  | al)  |
| (s)         |      |  |  |  |  | none |

# FORMATION.

elements ->> compound

### DECOMPOSITION

Compound -> elements

## COMBUSTION

element/compound + O2 -> most common oxides

# SINGLE REPLACEMENT

element + compound -> element + Eompound

#### **Chemical Reactions in Solution**

**Solution** - homogeneous (uniform) mixture of a solute and a solvent.

⇒ solute - substance dissolved ⇒ solvent - substance doing dissolving (liquid)



If the amount of solute that can dissolve in a solvent is large, then the solute is said to have a *high solubility*.

If the amount of solute that can dissolve in a solvent is small, then the solute is said to have a *low solubility*.

Solid substances formed from reactions in solutions are known as **precipitates**.

### **Solubility Rules**

- Group 1 Compounds have a high solubility
- Compounds containing ammonium (NH<sub>4</sub><sup>+</sup>) have a high solubility
- All acids have a high solubility
- Elements have a low solubility (except chlorine)
- Solubility varies for molecular compounds

| Table 11.2                |            |        |  |  |  |  |  |
|---------------------------|------------|--------|--|--|--|--|--|
| Activity Series of Metals |            |        |  |  |  |  |  |
|                           | Name       | Symbol |  |  |  |  |  |
|                           | Lithium    | Li     |  |  |  |  |  |
|                           | Potassium  | K      |  |  |  |  |  |
|                           | Calcium    | Ca     |  |  |  |  |  |
| /ity                      | Sodium     | Na     |  |  |  |  |  |
| ţ.                        | Magnesium  | Mg     |  |  |  |  |  |
| Decreasing reactivity     | Aluminum   | Al     |  |  |  |  |  |
| ng                        | Zinc       | Zn     |  |  |  |  |  |
| asi                       | Iron       | Fe     |  |  |  |  |  |
| cre                       | Lead       | Pb     |  |  |  |  |  |
| De                        | (Hydrogen) | (H)*   |  |  |  |  |  |
| ₩                         | Copper     | Cu     |  |  |  |  |  |
|                           | Mercury    | Hg     |  |  |  |  |  |
|                           | Silver     | Ag     |  |  |  |  |  |

### **Practice Problems**

$$Zn_{(s)}^{2+}$$
  $NO_3^{-}$   
 $Zn_{(s)} + Pb(NO_3)_{2(aq)} \longrightarrow Pb_{(s)} + Zn(NO_3)_{2(aq)}$ 

$$F^ H^+$$
  $F_{2(g)}$  +2HCl<sub>(aq)</sub>  $\longrightarrow$  Cl<sub>2(aq)</sub> +2HF<sub>(aq)</sub>

$$Al_{(s)} + CuSO_{4(aq)} \longrightarrow$$

p. 334 #17