Homework - #17 $$Al^{3+} SO_{1}^{2-}$$ $$2Al_{(s)} + 3CuSO_{4(aq)} \longrightarrow 3Cu_{(s)} + Al_{2}(SO_{4})_{3(q)}$$ $$Cl^{-} No^{+}_{1}$$ $$b) Cl_{2(cq)} + 2lVb_{1}I_{(aq)} \longrightarrow I_{2(s)} + 2lVaCl_{(aq)}$$ BaCO 3(5) | Table 11.2 | | | |---------------------------|------------|--------| | Activity Series of Metals | | | | | Name | Symbol | | Decreasing reactivity | Lithium | Li | | | Potassium | K | | | Calcium | Ca | | | Sodium | Na | | | Magnesium | Mg | | | Aluminum | Al | | | Zinc | Zn | | | Iron | Fe | | | Lead | Pb | | | (Hydrogen) | (H)* | | | Copper | Cu | | | Mercury | Hg | | | Silver | Ag | ## **Chemical Reactions** ## V. Double Replacement Reaction compound Reaction that occurs between two ionic compounds in solution. Ions will "change partners". ⇒if one of the products has low solubility, it may form a precipitate (solid). This double replacement reaction is A second type of double replacement reaction is a **neutralization** reaction, which is a reaction between an acid and a base, to form water and an ionic compound. ## **Practice Problems** BaCl_{2(aq)} + Na₂SO_{4(aq)} $$\rightarrow$$ BaSO_{4(s)} + 2 NaCl_(aq) NaOH_(aq) + FeBr_{3(aq)} \rightarrow 3NaBr_(aq) + $+$ Fe(OH)₃(s) [H I - Pb²⁺ NO₃] 2KI + Pb(NO₃) \rightarrow 2V \rightarrow 1 PbI_{2(s)} $$2^{\text{KI}_{(aq)}} + Pb(NO_3)_{2(aq)} \rightarrow 2^{\text{KN}_{3(aq)}} + PbI_{2(s)}$$ p. 335 #18,19