Homework - #17

$$Al^{3+} SO_{1}^{2-}$$

$$2Al_{(s)} + 3CuSO_{4(aq)} \longrightarrow 3Cu_{(s)} + Al_{2}(SO_{4})_{3(q)}$$

$$Cl^{-} No^{+}_{1}$$

$$b) Cl_{2(cq)} + 2lVb_{1}I_{(aq)} \longrightarrow I_{2(s)} + 2lVaCl_{(aq)}$$

BaCO 3(5)

Table 11.2		
Activity Series of Metals		
	Name	Symbol
Decreasing reactivity	Lithium	Li
	Potassium	K
	Calcium	Ca
	Sodium	Na
	Magnesium	Mg
	Aluminum	Al
	Zinc	Zn
	Iron	Fe
	Lead	Pb
	(Hydrogen)	(H)*
	Copper	Cu
	Mercury	Hg
	Silver	Ag

Chemical Reactions

V. Double Replacement Reaction

compound

Reaction that occurs between two ionic compounds in solution. Ions will "change partners".

⇒if one of the products has low solubility, it may form a precipitate (solid). This double replacement reaction is

A second type of double replacement reaction is a **neutralization** reaction, which is a reaction between an acid and a base, to form water and an ionic compound.

Practice Problems

BaCl_{2(aq)} + Na₂SO_{4(aq)}
$$\rightarrow$$
 BaSO_{4(s)} + 2 NaCl_(aq)

NaOH_(aq) + FeBr_{3(aq)} \rightarrow 3NaBr_(aq) + $+$ Fe(OH)₃(s)

[H I - Pb²⁺ NO₃]

2KI + Pb(NO₃) \rightarrow 2V \rightarrow 1 PbI_{2(s)}

$$2^{\text{KI}_{(aq)}} + Pb(NO_3)_{2(aq)} \rightarrow 2^{\text{KN}_{3(aq)}} + PbI_{2(s)}$$

p. 335 #18,19