Acid - Base Theories

Ctt3(00tt -> tt++ctt3c00 ftc(-> tt++ ct-1 Ct-1 Arrhenius Theory of Acids and Bases

- acids are hydrogen-containing compounds that ionize in aqueous solutions to give H⁺
- bases ionize to give OH ions

Monoprotic Acid - one hydrogen will ionize Ex. HNO₃

<u>Diprotic Acid</u> - two hydrogens will ionize Ex. H₂SO₄

<u>Triprotic Acid</u> - three hydrogens will ionize Ex. H₃PO₄

Advantage: it explained neutralization as H⁺ and OH⁻ combining to give H₂O

Disadvantage: not all hydrogen containing substances have acid properties (i.e., CH₄) and not all bases have OH⁻ (NH₃).

H+
$$lp^{+}$$

On

BRONSTED - LOWRY THEORY OF ACIDS & BASES

Bronsted-Lowry Acids and Bases

A new theory was needed because:

- (i) not all acid/base reactions involve water.
- (ii) not all bases contain hydroxide ions (Na₂CO₃, NH₃).

<u>Bronsted - Lowry Acid</u> - a proton (hydrogen-ion) donor <u>Bronsted - Lowry Base</u> - a proton (hydrogen-ion) acceptor

- acids lose a proton to a water molecule (H⁺ is a proton!)

Ex.
$$HCl_{(l)} + H_2O_{(l)} \longrightarrow H_3O^+_{(aq)} + Cl^-_{(aq)}$$

hydronium ion

(water molecule gains a proton)

- bases gain a proton from a water molecule

Ex.
$$H_2O + NH_{3(aq)} \longrightarrow OH_{(aq)}^- + NH_4^+_{(aq)}$$
B

A

(H₂O acts as an acid, NH₃ acts as a base)

However water does not have to be present in order to have a proton exchange.

Ex.
$$HCl_{(g)} + NH_{3(g)} \longrightarrow NH_{4(aq)}^+ + Cl_{(aq)}^-$$

HCl donates a proton (acid) NH₃ accepts a proton (base)

<u>amphoteric (amphiprotic)</u> - substance that can act as a Bronsted-Lowry acid in some reactions and a Bronsted-Lowry base in other reactions.

$$\mathrm{HSO_{3}^{-}}_{(aq)} + \mathrm{H_{3}O^{+}}_{(aq)} \longleftrightarrow \mathrm{H_{2}SO_{3(aq)}} + \mathrm{H_{2}O_{(l)}}$$

$$\mathrm{HSO_{3}^{-}}_{(aq)} + \mathrm{OH^{-}}_{(aq)} \longleftrightarrow \mathrm{SO_{3}^{2-}}_{(aq)} + \mathrm{H_{2}O_{(l)}}$$

Predict the products for the following reaction, and identify each substance as an acid or a base.

a)
$$CH_3COOH_{(aq)} + H_2O_{(1)} \longrightarrow CH_3COO_{(aq)} + H_3O_{(aq)} + A$$

B

B

A

c)
$$HS^{-}_{(aq)} + H_2O_{(l)} \longrightarrow H_2S_{(aq)} + OH_{(aq)}$$

$$HS_{69}^{-} + H_{2}O_{69} = S_{69}^{2-} + H_{3}O_{69}^{+}$$

Conjugate Acid-Base Pairs

$$CH_3COOH_{(aq)} + H_2O_{(l)}$$
 $CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$

Acid-Base reactions are at equilibrium!

(Look at forward reaction and reverse reaction)

- Every acid-base reaction at equilibrium has two acids and two bases.
- Acid on 'product' side is formed by addition of proton to base on 'reactant' side
- Base on 'product' side is formed by removal of a proton from acid on 'reactant' side

Conjugate acid-base pair

A pair of substances that differ by only a proton

Ex.

See Appendix F, p. 611

Homework

p. 593 #3-5,7,8