ALGEBRA OF 3-SPACE

- Coordinate geometry that represents space in **three** dimensions
- Coordinates are in the form of an ordered triplet (x, y, z)
- Three planes exist: xy plane, xz plane, yz plane

x axis -axis coming "out of the page"

y axis - horzontal axis

z axis - vertical axis

Plotting Points in 3-Space

Solving 3 x 3 Systems

REMEMBER:

- you can multiply equations by a constant
- can add & subtract 2 equations to get a new equation
- you can rearrange the order of equations

STEPS:

- 1) Eliminate one of the variables
- 2) Solve the 2 x 2 system
- 3) Use "backward substitution" to obtain a solution

Types of Systems

Remember: Looking at intersecting planes!

Consistent:

<u>Independent</u>: one unique solution

Dependent: Infinite number of solutions

Inconsistent: No Solutions

3 Possible Orientations That Give No Solution...

I. Consistent System with a Unique Solution

Solve using algebraic techniques

$$3x-2y=6$$

$$5x-9y+5z=-36$$

$$x-6y+7z=-39$$

$$35x-63y+35z=-950$$

$$x-6y+7z=-39$$

$$30x-33y=-57$$

$$3x-3y=6$$

$$3x-6y+7z=-39$$

$$3x-3y=6$$

$$3x-3y=6$$

$$3x-6y+7z=-39$$

$$3x-3y=6$$

$$3x-6y+7z=-39$$

I. Consistent System with a Unique Solution

Solve the following system of equations using a matrix reduced to its row echelon form.

$$4x + 3y - z = -7$$

 $3x - 2y + 3z = -10$
 $x + y - z = -2$

Word Problems

The San Diego Chargers football team uses three brands of cleats each year: Nike, Adidas, and Reebok. Last year the team went through a total of 410 pairs of cleats. Nike's cost \$84/pair, Adidas \$72/pair and Reeboks \$65/pair and they spent \$31 050 on cleats last season. If Nike's cleats were used twice as much as Reeboks, how many pairs of each brand of football cleat did they use?

(Declare variables, write a system of equations and an augmented matrix to model the problem then use your TI-84 to solve.)

Let
$$x = N_1 ke$$
 $X = \partial Z$
Let $y = Adidas$ $X - \partial z = 0$

Let $Z = Reebok$ $X - \partial z = 0$

84x + $7\partial y + 6\delta z = 31050$ [84 72 65 | 31050]

 $X + y + Z = 410$ [1 0 -2 0]

 $X - \partial z = 0$

They used 180 pairs of Nike cleats, 140 pairs of Adidas and 90 pairs of Reebok

II. Consistent System with a Dependent Solution (must create a parametric solution)

$$x - 3y - 7z = -13$$

$$3x + 2y + z = 2$$

$$(3)$$
 $x-14y-29z=-54$

$$(-)$$
 $3x + 2y + 2 = 2$

(a)
$$-4\frac{1}{y}-88z=-164$$

(b) $-4\frac{1}{y}+88z=-164$
(c) $-1\frac{1}{y}-22t=-41$
 $-1\frac{1}{y}=-4$

$$-1/y - 2\partial t = -4/1$$

 $-1/y = -4/1 + 2\partial t$

$$x-3y-7z=-13$$

$$x-3\left(\frac{41-22t}{11}\right)-7t-13$$

$$11x - 123 + 66t - 77t = -143$$

 $11x = -20 + 11t$
 $11x = -20 + 11t$

Don't forget about Matrices:

- Basic operations
- Determinants
- Identity Matrix
- Inverse Matrices
- Operations with TI-83
- Row Reduced Echelon Form