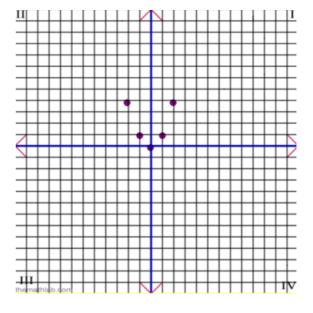


$$y = x^2$$

$$y = ((x+0)^3 + 0)$$

All QUADRATIC

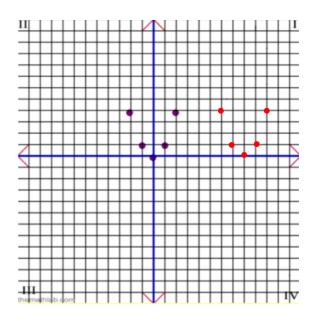
functions originate from y=x².



$$y=(x-8)^2$$

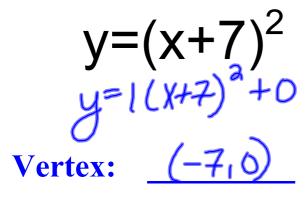
 $y=(x-8)^2+0$
Vertex: (810)

The graph has shifted along the x-axis.
"positive 8" units

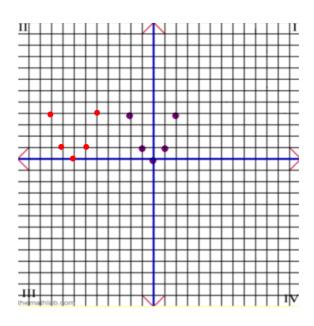


Mapping Rule: $(x,y)\rightarrow(x+8, y)$

This shows the vertex has shifted along the x-axis a postive 8 units.

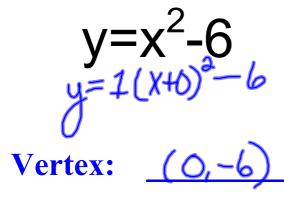


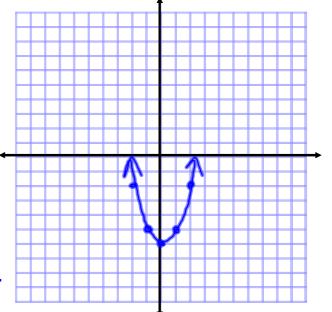
The graph has shifted along the x-axis.
"negative 7" units



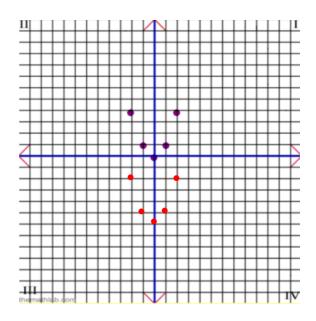
Mapping Rule: $(x,y)\rightarrow(x-7, y)$

This shows the vertex has shifted along the x-axis a negative 7 units.



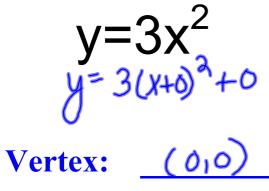


The graph has shifted along the y-axis.
"negative 6" units

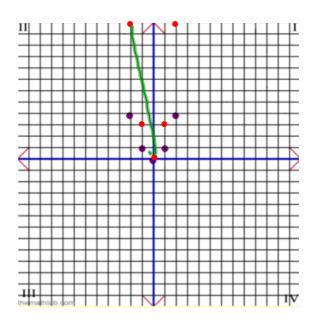


Mapping Rule: $(x,y)\rightarrow(x, y-6)$

This shows the vertex has shifted along the y-axis a negative 6.



The graph has been stretched 3 times the original.



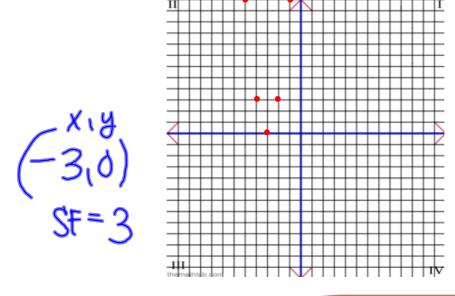
Mapping Rule: $(x,y)\rightarrow(x,3y)$

Notice the vertex has not shifted. The y values are three times greater than the original.

 $y=3(x+3)^{2}$ $y=3(x+3)^{3}+0$ Vertex: (-3,0)

S.F:

Let's compare...
$$y=3(x+3)^2+0$$



$$(-30)$$

$$S = 3$$

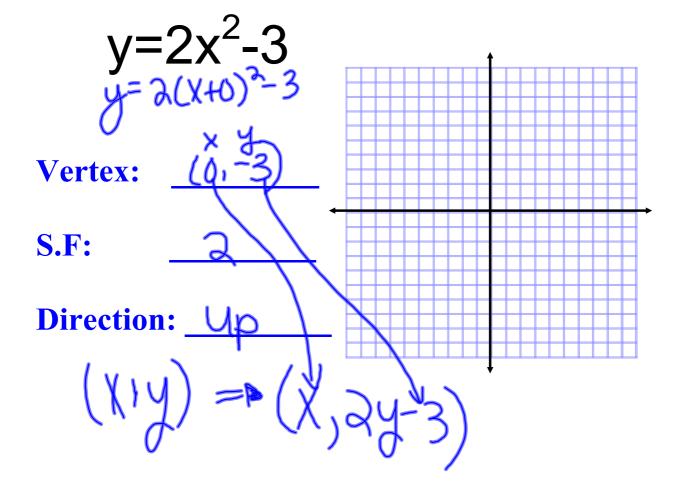
Mapping Rule:

 $(x,y)\rightarrow(x-3,3y)$

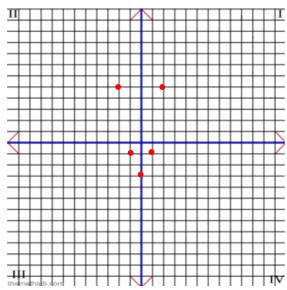
Vertex: (-3, 0)

S.F: 3 (The graph has been

stretched three times)



Let's compare.... $y=2x^2-3$



Mapping Rule:

 $(x,y)\rightarrow(x, 2y-3)$

Vertex: (0,-3)

S.F: 2 (The graph has been

stretched two times)

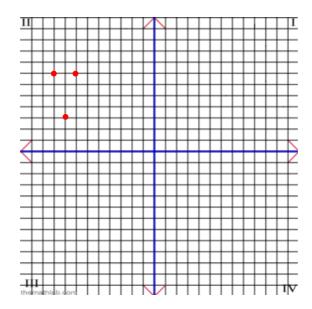
$$y=4(x+8)^2+3$$

Vertex: (-813)

S.F: <u>+</u>

$$(X_1y) = (X-8, 4y+3)$$

Let's compare....
$$y=4(x+8)^2+3$$



Mapping Rule: $(x,y) \rightarrow (x-8, 4y+3)$

X y Vertex: (-8,3)

S.F: 4 (The graph has been stretched four times)

$$y = 3(x-a)^{2}-4$$

 $y = 3(x-a)^{2}-4$
 $y = 3(x-a)^{2}-4$

$$y = -a(x-1)^{2}-6$$

 $y: (1,-6)$
SF: 2
Dir: Down
 $(x,y) = (x+1,-2y-6)$