Warm Up May **, 2011

Determine the value of m, when O is the centre

Determine the value of x, when O is the centre

You will need a cut-out of a circle, a protractor and a ruler.

- 1. Choose 2 points on the circumference of your circle. Label them as A and B, and then choose a third point C on the circle. Join AC and BC. (C on the larger arc)
- 2. Measure the < ACB with the protractor.
- 3. Join AO and OB and measure < AOB
- 4. Record your measurements

Are the two angles related

5. Repeat the steps above for points A, B and C on a different circle.

- The longer arc AB is the major arc.
- The shorter arc AB is the minor arc.

Central Angle:

The angle formed by joinging the endpoints of a arc to the centre of a circle (involves radii)

Inscribed Angle:

The angle formed by joinging the endpoints of a arc to a point on the circle

Inscribed and central angles are **SUBTENDED** by the MINOR arc

come from the same 'smaller arc'

Gental Angle & Inscribed Angle Property

In a circle, the measure of a central angle subtended by an arc is TWICE the measure of an inscribe angle subtended by the same arc.

Central angle is twice the inscribed angle

or

$$<$$
PRQ = $\frac{1}{2}$ $<$ POQ

Inscribed angle is half the center angle

Inscribed Angle Property

In a circle, all inscribed angles subtended by the same arc are congruent.

Angles is a Semicircle Property

All inscribed angles subtended by a semicircle are right angles

Makes sense

Inscribed angles are always half the centre

Center Angle = 180° (Straight Line)

Inscribed angle is half the Central Angle

Inscribed = (1/2) central =(1/2) 180° = 90°

Example 1 Using Inscribe and Central Angles

Point O is the center of a circle. Determine the values of k° and t°.

Example 2

Applying the Property of an Angle Inscribed in a Semicircle

In Triangle ABC, $< A = 90^{\circ}$ (Insribed from the semicircle)

THUS

Find y° by Angle Sum of Triangle of $\triangle ABC$

$$180 - 90 - 32 = 48^{\circ}$$

 $y^{\circ} = 48^{\circ}$

Point O is the center of the circle. Determine the value of x° and y° .

For X^o

Central/Inscribe Angle Theorem

<AOB is a Central Angle subtended from arc AB

<ACB is an Inscribed Angle subtended from arc AB

Thus

Example 3 Determining Angles in an Inscribed Triangle

Determining the values of x° and y° .

Homework:

p.410 - 412

Page 410 Questions:

3c 4a,b,c,d 5a,b,c 6a 11b,c

CSI Crime Scene Investigation.mp3