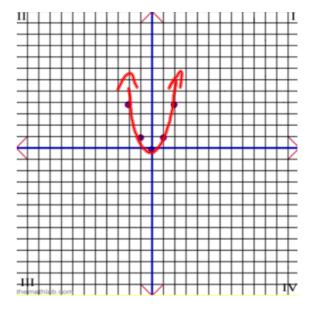
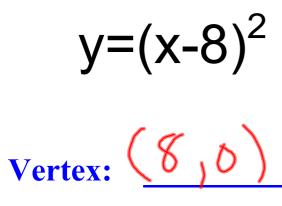
Magning

$$y=x^2$$

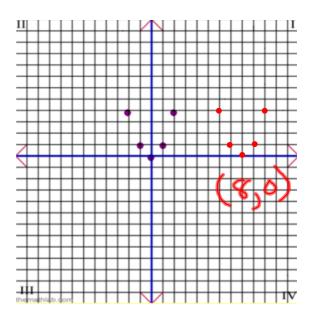
All QUADRATIC functions originate from y=x².





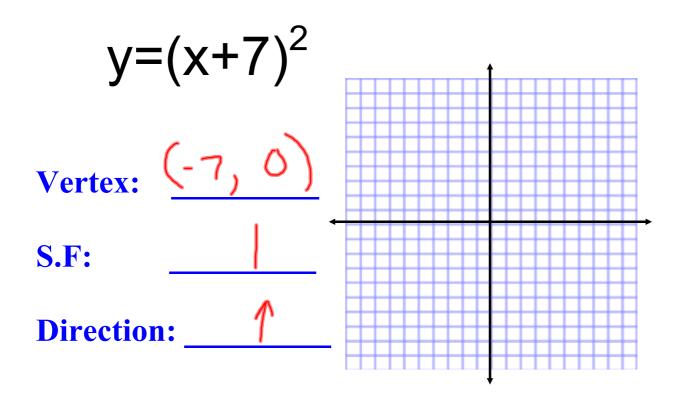
S.F:

The graph has shifted along the x-axis.
"positive 8" units

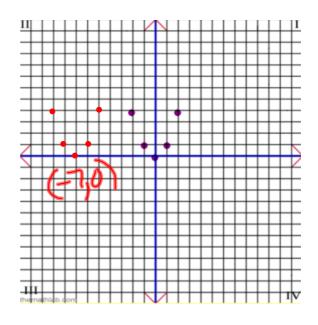


Mapping Rule: $(x,y)\rightarrow(x+8, y)$

This shows the vertex has shifted along the x-axis a postive 8 units.

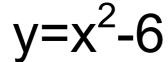


The graph has shifted along the x-axis.
"negative 7" units



Mapping Rule: $(x,y)\rightarrow(x-7, y)$

This shows the vertex has shifted along the x-axis a negative 7 units.

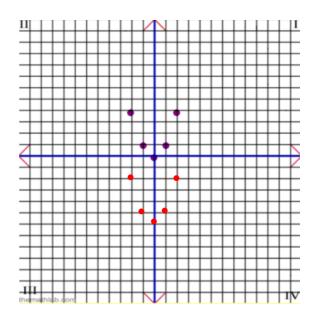


 $y=x^2-6$ Vertex: (6)-6

S.F:

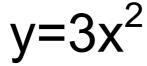
Direction: __

The graph has shifted along the y-axis.
"negative 6" units



Mapping Rule: $(x,y)\rightarrow(x, y-6)$

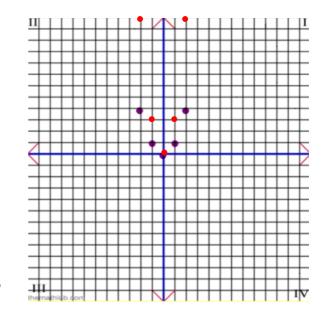
This shows the vertex has shifted along the y-axis a negative 6.



 $y=3x^{2}$ Vertex: (0,0)

S.F:

The graph has been stretched 3 times the original.



Mapping Rule: $(x,y)\rightarrow(x,3y)$ shif

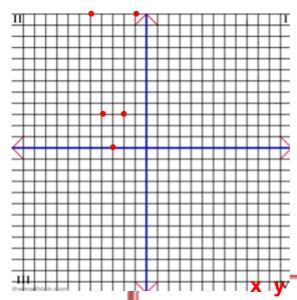
Notice the vertex has not shifted. The y values are three times greater than the original.

 $y=3(x+3)^2$

Vertex:

S.F:

Let's compare.... $y=3(x+3)^2$



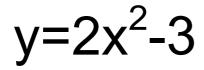
Mapping Rule:

 $(x,y)\rightarrow(x-3,3y)$

Vertex: (-3, 0)

S.F: 3 (The graph has been stretched three times)

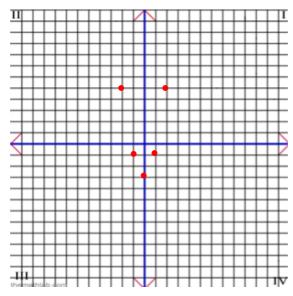
Direction: Up



Vertex:

S.F:

Let's compare....
$$y=2(x)^2-3$$



(0,-3)

Mapping Rule:

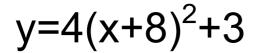
 $(x,y)\rightarrow(x, 2y-3)$

X y Vertex: (0,-3)

S.F: 2 (The graph has been

stretched two times)

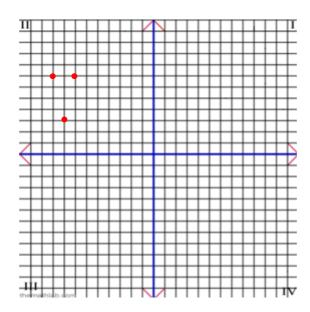
Direction: Up



Vertex:

S.F:

Let's compare....
$$y=4(x+8)^2+3$$



Mapping Rule:
$$(x,y) \rightarrow (x-8, 4y+3)$$

Vertex: (-8,3)

S.F: 4 (The graph has been stretched four times)

Direction: Up