May 26, 2011

- 1) answers to pg 303 #1,2,4 and pg 315 #1,3,5
- 2) Ohms Law

Test Next Friday

Warm-Up

What are the symbol and units for voltage? \(\struct \tau \oldsymbol \) current? \(\cdots \oldsymbol \tau \oldsymbol \) resistance? \(\cdots \oldsymbol \tau \oldsymbol \ta

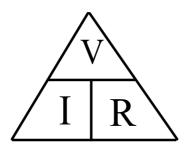
Answers Voltage Questions Pg 303 #1,2,4

- #1. a) It is nessecary for electrons to move continuously around the circuit so that the electrons can release energy to the load in the circuit.
- b) Electric charges flow from the negative into the positive. Electrons are the only charge able to move and they are attracted back to the positive terminal.
- #2. a) Electric potential is the energy each electron hasb) The SI unit is volt, the symbol is V
- #4. There is 20 times more energy in the electrons of 120 V source than there is on the negative terminal of a 6 V source.

pg 315 #1,3,5

- 1. a) Electric current is measure of the rate at which electric charges move past a given point in a circuit.
- b) the SI unit is ampere and the symbol used to represent it is A.
- 3. a) The ammeter needle will only indicate the current if its positive terminal is connected to that part of the circuit nearest the positive terminal of the source of electrical energy.
- b) If the ammeter is connected incorrectly the meter needle will try to rotate in the wrong direction and you will not obtain useful data.
- 5. It is dangerous to help someone who is experiencing an electric shock, because the shock will move through the person into you.

Ohm's Law


When electrons flow through a conductor, the electrical resistance (R) causes a loss of electrical potential (V).

Ohm's Law states that the potential difference (V) across a conductor is proportional (directly related to the electric current (I) flowing through the conductor.

 $V = I \times R$

Formulas

- V = I x R (voltage = electrical current x electrical resistance)
- I = V/R (elec. current = voltage/ resistance)
- R = V/I (resistance = voltage/elec. current)

Example Question Ohm's Law

What is the voltage drop across the tungsten filament in a 100-W light bulb? The resistance of the filamet is 144Ω and a current of 0.8333 A is flowing through it.

Step 1: Read the problem carefully and record the given data

Step 2: Choose the formula that relates to the problem

Step 3: Substitute given quantities into the formula

Step 4: Compute using your calculator

V-120.V

Step 5: Write your answer in the correct units/SD

Sample Problem 2:

If an electric toaster is connected to a 120 V outlet in the kitchen and the heating element in the toaster has a resistance of 14Ω , calculate the current flowing through it.

$$T=?$$
 $V=120V$
 $R=14J$
 $T=V$
 $R=14J$
 $T=120V$
 $V=120V$
 $V=120V$

Complete

Ohms Law WS Handout #1-12