p. 236 #23-29Worksheet 8.3

$$H_3C-C=C-C=C-CH_3$$

Single bonds

 $\overline{4sp^3}$ (s + p_x + p_y+ p_z) -sigma bonds tetrahedral, pyramidal, bent

Double bonds

3sp² (s + p_x + p_y)
- 3 sigma bonds
p_z
- pi bond
trigonal planar

Triple bonds

2sp (s + p_x)
- 2 sigma bonds
p_y, p_z
- 2 pi bonds
linear

Bond Polarity

- In covalent bonds, the bonding pairs of electrons are shared between atoms.
- Two nuclei 'pull' the electrons. Amount of 'pull' is dependent on the atoms' electronegativities.

Nonpolar covalent bond

Bond that forms when the atoms in the bond pull equally, and the electrons are shared equally.

Ex. 2.1 2.1 H:H

H - H

C-5

3.0 3.0 1×10^{-3}

Polar covalent bond

Bond that forms when the electrons are shared unequally

- More electronegative atom attracts electrons more strongly and gains a slightly negative charge. Less electronegative atom has a slightly positive charge.

Ex.

2.1 3.0 H - Cl

H₂O

Table 6.3 Electronegativity Differences and Bond Types

Electronegativty difference range	Most probable type of bond	Example
0.0-0.4	Nonpolar covalent	H - H (0.0)
0.4-1.0	Moderately polar covalent	H - CI (0.9)
1.0-2.0	Very polar covalent	H - F (1.9)
≥ 2.0	lonic	Na ⁺ Cl ⁻ (2.1)

^{*} No sharp boundary between ionic and covalent

Polar Molecules

In a polar molecule, one end of the molecule is slightly negative, and the other end is slightly positive.

-Partial charges are often called charged regions or poles.

A molecule with two poles is called a dipole.

p. 239

Practice Problems #30, 31