EQUATIONS OF A CIRCLE

- Remember that a circle is a locus of points. A circle is all of the points that are a fixed distance, known as the radius, from a given point, known as the center of the circle.

The standard form equation of a circle is the rule that relates the \boldsymbol{x} and \boldsymbol{y} values that result in a circle when graphed.

The CIRCLE with CENTER at $(0,0)$

Eorigin

The equation of a circle centered at the origin $(\mathbf{0}, \mathbf{0})$ with a radius of \mathbf{r}, is given by:

$$
x^{2}+y^{2}=r^{2}
$$

This equation of a circle is said to be expressed in standard form.

Example 1

Find the equation of a circle centered at the origin and having a radius of $3 \mathrm{~cm} . \quad r=3$

Solution

Using the equation above, $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{r}^{2}$, the equation of the circle is: $\mathbf{x}^{2}+\mathbf{y}^{2}=(\mathbf{3})^{2}$

$$
x^{2}+y^{2}=9
$$

Example 2

Given the equation, $\mathbf{x}^{2}+\mathbf{y}^{\mathbf{2}}=\mathbf{2 5}$, find the radius of the circle and sketch the graph.

$$
\begin{aligned}
& r^{2}=25 \\
& r=5
\end{aligned}
$$

Solution
We know that the radius, $r=\sqrt{25}=5$ units and, the center is at the origin $(0,0)$.

This is enough information for us to sketch the graph of this circle.

For the circle with a defining equation of $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{r}^{2}$, you can see that

- x -intercepts are $\pm \mathbf{r}$.
- Domain - the set of all x values.
$\{\mathrm{X} \mid-\mathbf{r} \leq \mathrm{x} \leq \mathbf{r}, \mathrm{X} \varepsilon \mathrm{R}\}$.
- y -intercepts are $\pm \mathbf{r}$.
- Range - the set of all y values.
$\{\mathrm{y} \mid-\mathbf{r} \leq \mathrm{y} \leq \mathbf{r}, \mathrm{y} \varepsilon \mathrm{R}\}$.

Example 3 / Solution
Complete the following chart.

Equation	Center $\mathbf{x}^{2}+\mathbf{y}^{2}=\mathbf{4 9}$	$(0,0)$

Range	x-intercepts	$\frac{\text { v-intercepts }}{}$$\{y \mid-7 \leq y \leq 7, y$ -
-7 and 7	-7	
$(-7,0) \oplus(7,0)$	$(0,-7)+(0,7)$	

Homework
Do * $1-5$
(1) b) r

$$
\begin{array}{lll}
r=\sqrt{3} & \text { c) } r=2 \sqrt{5} & \text { d) } r=2 r \\
x^{2}+y^{2}=r^{2} & x^{2}+y^{2}=r^{2} & x^{2}+y^{2}=(2 r)^{2} \\
x^{2}+y^{2}=(\sqrt{3})^{2} & x^{2}+y^{2}=(2 \sqrt{5})^{2} & x^{2}+y^{2}=4 r^{2} \\
x^{2}+y^{2}=3 & x^{2}+y^{2}=20
\end{array}
$$

(2) $\mathrm{B}:$

$$
\begin{aligned}
x^{2}+y^{2}=50 \longleftarrow r^{2} & =50 \\
r & =\sqrt{50} \\
r & =\sqrt{2} 5 \times 2 \\
r & =5 \sqrt{2}
\end{aligned}
$$

