CIRCLES with CENTER at (h, k)

The equation of a circle centered at any point, (**h**, **k**) with a radius of **r**, is given by:

$$(x-h)^2 + (y-k)^2 = r^2$$

This equation of a circle is also said to be expressed in **standard form**.

*** It should be readily seen that this equation reduces to $x^2 + y^2 = r^2$ if the point (0, 0) is substituted for (h, k).

Example 1

Determine the center and radius for each circle defined by the following equations:

A:
$$(x-4)^2 + (y+5)^2 = 36$$
 B: $(x+9)^2 + (y-3)^2 = 14$

Solution

A: Center (4, -5);
$$r = \sqrt{36}$$
 B: Center (-9, 3); $r = \sqrt{14}$ = 6

C:
$$(x + 4)^{3} + (y - 3)^{3} = 20$$

Center: $(4,3)$ $r = \sqrt{30}$
 $r = \sqrt{4 \times 5}$
 $r = 2\sqrt{5}$

Example 2

Give the equation of the circle in standard form with a radius of 4 units and a center at (-3, 6). $(x+3)^3 + (y-6)^3 = (4)^3$

$$(x-h)^2 + (y-k)^2 = r^2$$

 $(x-3)^2 + (y-6)^2 = (4)^2$
 $(x+3)^2 + (y-6)^2 = 16$

Example 3

Given the equation, $(x \pm 3)^2 + (y - 2)^2 = \underline{16}$, find the center and radius of the circle and sketch the graph.

What is the Domain? Range?

Solution

Center (-3, 2);
$$r = \sqrt{16}$$

= 4

Domain: $\{x \mid -7 \le x \le 1, x \in R\}$

Range: $\{y \mid -2 \le y \le 6, y \in R\}$

**For the circle with a defining equation of $(x - h)^2 + (y - k)^2 = r^2$, you can see that:

Domain:
$$\{x \mid \frac{34}{2} \le x \le \frac{34}{1}, x \in R\}$$
 Range: $\{y \mid \frac{34}{2} \le y \le \frac{344}{2}, y \in R\}$ $\{y \mid \frac{34}{2} \le y \le \frac{344}{2}, y \in R\}$ $\{y \mid \frac{34}{2} \le y \le \frac{344}{2}, y \in R\}$

where the ___'s in the domain are filled with $h \pm r$, and the ___'s in the range are filled with $k \pm r$.

3
$$x^{2}+y^{3}+8x-4y+3=0$$

as $M(-3,-3)$

$$(3)^{3}+(3)^{3}+8(3)-4(3)+3=0$$