Calculate the mass of methane combusted when 3700. kJ of energy is released according to the following reaction.

CH_{4(g)} + 2O_{2(g)}
$$\Rightarrow$$
 CO_{2(g)} + 2H₂O_(g) + 802.7kJ
Step 1: Hr (general)

Att > Enthr

Hr = $\frac{AHr}{I} = -\frac{802.7kJ}{I} = -\frac{802.7kJ}{I}$

Step 2: n (specific)

Att = nHr

 $n = \frac{AHr}{Hr}$
 $n = \frac{AHr}{H$

Multi-Step Energy Calculations can be used when energy produced in one chemical reaction is used to heat another substance. These calculations are very similar to calorimetry calculations.

total enthalpy change = quantity of heat

$$\Delta H_r = -q$$

Sample Problem

What mass of octane is completely burned during the heating of 20.L of aqueous ethylene glycol automobile coolant from -10°C to 70°C? The volumetric heat capacity of aqueous ethylene glycol is 3.7 kJ/L°C.

Ex.
$$2C_8H_{18(1)} + 25O_{2(g)} \longrightarrow 18H_2O_{(s)} + 16CO_{2(g)} + 10148.2 \text{ kJ}$$

Stop 1: H_r (general)

 $AH_r = nH_r$
 $H_r = AH_r = -10 \text{ HB.2 kJ} = -5074.1 \text{ kJ}_{rol}$
 $Stop 2$: N (specific)

 $AH_c = -Q$
 $NH_c = -VCAT$
 $N(-5074.1 \text{ kJ}_{rol}) = -(20.L)(3.7 \text{ kJ}_{1.5})(80.0C)$
 $N = 1.1667 \text{ mol}$
 $Stop 3$: M (specific)

1.1667 mol M (specific)

1.1667 mol M (specific)

Multi-Step Energy Calculations Worksheet