Independent Events

When tossing a coin twice, the outcome of the second toss is not affected by the outcome of the first toss. In other words, the 2 events are independent.

When a coin is tossed twice in succession, there are 4 possible outcomes: HH, HT, TH, TT.

Therefore, the probability of tossing 2 heads in a row is:

$$P(H \text{ and } H) = \frac{1}{4}$$

The theoretical probability, ¼ appears to be the product of the two individual probabilities.

The point
$$\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$$
 and means you multiply $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and means you multiply $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ where $\mathbf{P}(\mathbf{H}) = \mathbf{P}(\mathbf{H}) \times \mathbf{P}(\mathbf{H})$ and $\mathbf{P}(\mathbf{H}) = \mathbf$

This result is true in general!!!

What is the probability of picking a King from a deck of rards and tossing a tails with a coin

P(King and Tails) =
$$F(King) \times P(Tails)$$

= $\frac{1}{13} \times \frac{1}{3}$
= $\left(\frac{1}{26}\right)$

Example 1: A coin is tossed and a die is rolled.

What is the probability of tossing a tail and rolling an even number?

Example 2: A coin is tossed and a die is rolled twice. What is the probability of tossing a <u>tail</u> and rolling two <u>even</u> numbers?

P(T and Even and Even) = P(T)
$$\times$$
 P(Even) \times P(Even)
= $\frac{1}{3} \times \frac{3}{6} \times \frac{3}{6}$
= $\frac{1}{3} \times \frac{1}{3} \times \frac{3}{6}$
= $\frac{1}{8} \times \frac{1}{3} \times \frac{3}{6}$

①
$$P(C \text{ and } D) = P(C) \times P(D)$$

= 0.3 × 0.15
= 0.045