ANSWERS >> Exercise 3.13.

- A bowl contains 3 White and 5 black balls.
- b) P(black and black) = P(b) x P(b/b) = $\frac{5}{8}$ x $\frac{4}{7}$ a) P(white and black)= $P(w) \times P(b|w)$ $= \frac{3}{8} \times \frac{5}{7}$ = 15= <u>20</u> 56
- = 5c) P(white and white) = $P(w) \times P(w|w)$ = $\frac{3}{8} \times \frac{2}{7}$
 - - = 6 56 $=\frac{3}{28}$

2. A bag contains 4 nickels and 6 quarters

a)
$$P(nickel \text{ and quarter})$$
 b) $P(quarter \text{ and } nickel})$
 $= P(n) \times P(q | n)$ $= P(q) \times P(n | q)$
 $= \frac{4}{10} \times \frac{6}{9}$ $= \frac{6}{10} \times \frac{4}{9}$
 $= \frac{2}{5} \times \frac{2}{3}$ $= \frac{3}{5} \times \frac{4}{9}$
 $= \frac{4}{15}$ $= \frac{12}{45}$

c) P(quarter and quarter) =
$$\frac{4}{15}$$

= $P(q) \times P(q|q)$
= $\frac{6}{10} \times \frac{5}{9}$

$$= \frac{3 \times 5}{5}$$

$$= \frac{15}{45}$$

$$= \frac{1}{3}$$

3. A box contains 6 black chips, 9 blue chips

a)
$$P(black and blue)$$
 b) $P(blue and blue and blue)$ = $P(black) \times P(blue|black)$ = $P(b) \times P(b|b) \times P(b|2b)$ = $P(b) \times P(b|2b)$

C)
$$P(b \text{ and } b \text{ and } b \text{ and } b \text{ and } b \text{ and } b)$$

$$= P(b) \times P(b|b) \times P(b|2b) \times P(b|3b) \times P(b|4b) \times P(b|5b) \times P(b|ab)$$

$$= \frac{6}{15} \times \frac{5}{14} \times \frac{4}{13} \times \frac{3}{12} \times \frac{2}{11} \times \frac{1}{10} \times \frac{9}{9}$$

$$= 0 \quad \text{TMPOSSTBLE?}$$

4a) INDEPENDENT/DEPENDENT EVENTS.

d	1	
Simi	lariti	65
7	\sim	

Differences.

 To get both you find the product of individual probabilities

- · Numerators / Denominators change if one event is dependent on another.
- 5. A box has 3 hockey and 6 football cards.
- a) P(hockey and hockey)= $P(h) \times P(h|h)$ = $\frac{3}{9} \times \frac{2}{8}$ = $\frac{1}{3} \times \frac{1}{4}$ = $\frac{1}{12}$
- b) P(hockey and football) = P(h) x P(f/h) = $\frac{3}{9} \times \frac{6}{8}$ = $\frac{1}{3} \times \frac{3}{4}$ = $\frac{3}{12}$ = $\frac{1}{4}$

100 plugs, 5 are defective b) P(not defective) = 1 - P(defective) $= \frac{1}{1} - \frac{5}{100}$ $= \frac{100}{100} - \frac{5}{100}$ $= \frac{95}{100}$ $= \frac{19}{20}$ 6. A box contains 100 plugs, 5 are defective.

a)
$$P(\text{defective plug})$$
 b) $P(\text{not defective})$

$$= 5$$

$$= 1 - P(\text{defective})$$

$$= 1 - 1$$

$$= 1$$

$$= 20$$

$$= 20$$

$$= 19$$

7. Class ~> 16 girls, 14 boys.

a)
$$P(girl \text{ and } girl)$$
 b) $P(boy \text{ and } boy)$ c) $P(boy \text{ and } girl)$
= $P(g) \times P(glg)$ = $P(b) \times P(blb)$ = $P(b) \times P(glb)$
= $\frac{16}{50} \times \frac{15}{29}$ = $\frac{14}{50} \times \frac{13}{29}$ = $\frac{14}{15} \times \frac{16}{29}$
= $\frac{8}{15} \times \frac{15}{29}$ = $\frac{7}{15} \times \frac{13}{29}$ = $\frac{7}{15} \times \frac{16}{29}$
= $\frac{120}{435}$ = $\frac{91}{435}$ = $\frac{112}{435}$ (Only one) $\frac{112}{435} \times 2 = \frac{224}{435}$

```
8. 24 Cards

• #'s 0 \rightarrow 9

• 2 equilateral \Delta's

• 3 rectangles

• 4 parallelograms

• 2 Circles

a) P(number and geometric figure)

= P(number) × P(geometric|#)

= 10 × 14

24 23

= 70

276
```

b)
$$P(\text{number and number})$$
 c) $P(\Delta \text{ and } O)$
= $P(\#) \times P(\#/\#)$ = $P(\Delta) \times P(O/\Delta)$
= $P(\#/\#) \times P(O/$

d) P(parallel and even)
$$= P(p) \times P(e|p)$$

$$= 10 \times \frac{5}{24}$$

$$= \frac{5}{12} \times \frac{5}{23}$$

$$= \frac{25}{276}$$
e) P(figure without right angle and parallelogram)
$$= P(\text{no right}) \times P(\text{parallelogram | no right})$$

$$= \frac{4}{24} \times \frac{7}{23}$$

$$= \frac{1}{6} \times \frac{7}{23}$$

$$= \frac{7}{138}$$