Homework

Chemical Reactions

IV. Single Replacement Reaction

Reaction of an element with a compound to produce a new element and an ionic compound.

- ⇒usually occurs in aqueous solution
- ⇒reaction will only occur if the element is replacing a less reactive element (see table 11.2)

reactive element (see table 11.2)
$$Cu_{(s)}^{2+} + 2AgNO_{3(aq)} \longrightarrow 2Ag_{(s)} + Cu(NO_3)_{2(aq)}$$
metal compound metal compound

BaSan Ba²⁺ 5²⁻

Kottan K+ OH⁻

ZnSDyan
$$Z_{0}^{2+}$$
 S_{0}^{2-}

	C1- Br- I -		NO3-
High (09)		Group 2	all
(a)		most	none

FORMATION

elements -> compound

DECOMPOSITION

Compound -> elements

SINGLE REPLACEMENT

element + compound -> element + compound (solution)

Chemical Reactions in Solution

Solution - homogeneous (uniform) mixture of a solute and a solvent.

⇒ solute - substance dissolved

⇒ solvent - substance doing dissolving (liquid)

If the amount of solute that can dissolve in a solvent is large, then the solute is said to have a *high solubility*.

If the amount of solute that can dissolve in a solvent is small, then the solute is said to have a *low solubility*.

Solid substances formed from reactions in solutions are known as **precipitates**.

Solubility Rules

- Group 1 Compounds have a high solubility
- Compounds containing ammonium (NH₄⁺) have a high solubility
- All acids have a high solubility
- Elements have a low solubility (except chlorine)
- Solubility varies for molecular compounds

· .

Table 11.2						
Activity Series of Metals						
	Name	Symbol				
	Lithium	Li				
	Potassium	K				
	Calcium	Ca				
/ity	Sodium	Na				
Decreasing reactivity	Magnesium	Mg				
rea	Aluminum	Al				
ng	Zinc	Zn				
asi	Iron	Fe				
cre	Lead	Pb				
۵ ا	(Hydrogen)	(H)*				
\checkmark	Copper	Cu				
	Mercury	Hg				
	Silver	Ag				

Practice Problems

$$Z_{n(s)}^{2+} + Pb(NO_3)_{2(aq)} \longrightarrow Pb_{(s)} + Z_{n(NO_3)_{2(aq)}}$$

$$F \xrightarrow{} + H^{+}$$

$$F_{2(g)} \xrightarrow{} HCl_{(aq)} \longrightarrow Cl_{2(aq)} + ZHF_{(aq)}$$

$$Z_{n(s)}^{2+} + Z_{n(NO_3)_{2(aq)}} \longrightarrow Cl_{2(aq)} + ZHF_{(aq)}$$

p. 334 #17