Problem of the Week Grade 11 and 12

Sphere Pressure
 Solution

Problem

A cube rests inside a sphere so that each vertex touches the sphere. The radius of the sphere is 6 cm . Determine the volume of the cube.

Solution

Label four vertices of the cube A, B, C, D as shown in the diagram. Let x represent the side length of the cube. Then $A B=B C=C D=x$.

The diagonals of a cube intersect in a point such that the distance from the intersection point to each vertex is equal. Since each vertex of the cube touches the sphere, the diagonal of the cube, $A D$, is equal in length to the diameter of the sphere. Therefore $A D=2(6)=12 \mathrm{~cm}$.

Each face of a cube is a square so $\angle A B C=90^{\circ}$. Using Pythagoras' Theorem,

$$
A C^{2}=A B^{2}+B C^{2}=x^{2}+x^{2}=2 x^{2} .
$$

In a cube the sides are perpendicular to the base. In particular, $D C$ is perpendicular to the base and it follows that $D C \perp A C$. Therefore $\triangle D C A$ is a right angled triangle. Using Pythagoras' Theorem,

$$
A D^{2}=A C^{2}+C D^{2}=2 x^{2}+x^{2}=3 x^{2} .
$$

But $A D=12$ so $A D^{2}=144$. Then $3 x^{2}=144, x^{2}=48$ and $x=4 \sqrt{3}$ since $x>0$. The volume of the cube is $x^{3}=(4 \sqrt{3})^{3}=192 \sqrt{3} \mathrm{~cm}^{3}$.
\therefore the volume of the cube is $192 \sqrt{3} \mathrm{~cm}^{3}$.

