Problem of the Week
 Grade 11 and 12

Five Prime Mates

The product of five different odd prime numbers is a five-digit number of the form strst, where $r=0$.

Determine all possible numbers.

See the next page for a summary of divisibility tests for the integers 2 to 12 .

Divisibility Tests

Divisibility by 2: A number is divisible by 2 if the last digit is even.
Divisibility by 3: A number is divisible by 3 if the sum of the digits is divisible by 3 . For example, 1295 is not divisible by 3 since $1+2+9+5=17$ which is not divisible by 3 . However, 1296 is divisible by 3 since $1+2+9+6=18$ which is divisible by 3 .

Divisibility by 4: A number is divisible by 4 if the last two digits are divisible by 4 . For example, 1295 is not divisible by 4 since 95 is not divisible by 4 . However, 1296 is divisible by 4 since 96 is divisible by 4 .

Divisibility by 5: A number is divisible by 5 if the last digit is a 0 or 5 .
Divisibility by 6: A number is divisible by 6 if it is divisible by both 2 and 3 . The number 395 is not divisible by 6 since it is not even and hence is not divisible by 2 . The number 862 is not divisible by 6 since it is not divisible by $3(8+6+2=16$ which is not divisible by 3$)$. The number 2964 is divisible by 6 . It is even and is therefore divisible by 2 . It is divisible by 3 since $2+9+6+4=21$ which is divisible by 3 . Since 2964 is divisible by both 2 and 3 , it is divisible by 6 .

Divisibility by 7: We can follow an unusual algorithm to determine if an number is divisible by 7: Remove the unit's digit, double that digit and subtract it from the leftover number. If the difference is divisible by 7 , the original number is divisible by seven. If unsure, repeat the algorithm with the new number.

Is 1356 divisible by 7 ? Remove the 6 , double the 6 to 12 , subtract from 135 leaving 123 . Is 123 divisible by 7 ? Remove the 3 , double the 3 to 6 , subtract from 12 leaving 6.6 is not divisible by 7 and therefore 1356 is not divisible by 7 .

Is 45024 divisible by 7 ? Remove the 4, double to 8 , subtract from 4502 giving 4494 . Repeat. Remove the 4 , double to 8 , subtract from 449 giving 441. Repeat. Remove the 1, double to 2, subtract from 44 giving 42 which is divisible by 7 . Therefore, 45024 is divisible by 7 .

Divisibility by 8: A number is divisible by 8 if the last three digits are divisible by 8 . For example, 1295 is not divisible by 8 since 295 is not divisible by 8 . However, 1296 is divisible by 8 since 296 is divisible by 8 .

Divisibility by 9: A number is divisible by 9 if the sum of the digits is divisible by 9 . For example, 1295 is not divisible by 9 since $1+2+9+5=17$ which is not divisible by 9 . However, 1296 is divisible by 9 since $1+2+9+6=18$ which is divisible by 9 .

Divisibility by 10: A number is divisible by 10 if the last digit is a 0.
Divisibility by 11: We can follow an unusual algorithm to determine if an number is divisible by 11: Add the numbers in the even positions. Add the numbers in the odd positions. Subtract the two sums. If this difference is divisible by 11 , the original number is divisible by 11 .

Is 1235862 divisible by 11 ? The sums are $1+3+8+2=14$ and $2+5+6=13$. The difference of the sums is 1, which is not divisible by 11. Therefore, the number 1235862 is not divisible by 11 .

Is 4151617151 divisible by 11 ? The sums are $1+1+1+1+1=5$ and $4+5+6+7+5=27$. The difference of the sums is -22 , which is divisible by 11 . Therefore, the number 4151617151 is divisible by 11 .

Is 7326495 divisible by 11 ? The sums are $7+2+4+5=18$ and $3+6+9=18$. The difference of the sums is 0 , which is divisible by 11 . Therefore, the number 7326495 is divisible by 11 .

Divisibility by 12: A number is divisible by 12 if it is divisible by 4 and 3 . The number 394 is not divisible by 12 since 94 is not divisible by 4 . The number 964 is not divisible by 12 since it is not divisible by 3 . (The sum of the digits is 19 which is not divisible by 3.) The number 2964 is divisible by 12 . The last two digits, 64 , are divisible by 4 and therefore 2964 is divisible by 4 . The sum of the digits is 21 which is divisible by 3 . Since 2964 is divisible by 4 and 3 , it is divisible by 12 .

