
# Problem of the Week Grade 11 and 12

Enough Information? Solution

### Problem

In  $\triangle PQR$ , PQ = 7, PR = 9 and median PM = 7. Determine the length of QR.



#### Solution 1

Since PQ = PM = 7,  $\triangle PQM$  is isosceles. In  $\triangle PQM$ , draw an altitude from P to QM, intersecting at N. In an isosceles triangle, the altitude drawn to the base bisects the base. Therefore QN = NM = x. Since PM is a median in  $\triangle PQR$ , MR = QM = 2x. Let PN = h.

 $\bigtriangleup PNM$  is a right triangle. Using Pythagoras' Theorem,

$$PN^{2} = PM^{2} - NM^{2}$$
  

$$h^{2} = 7^{2} - x^{2}$$
  

$$h^{2} = 49 - x^{2}$$
 (1)

 $\bigtriangleup PNR$  is a right triangle. Using Pythagoras' Theorem,

$$PN^{2} = PR^{2} - NR^{2}$$

$$h^{2} = 9^{2} - (x + 2x)^{2}$$

$$h^{2} = 81 - (3x)^{2}$$

$$h^{2} = 81 - 9x^{2}$$
(2)

In equations (1) and (2), the left side of each equation is  $h^2$ . Therefore, the right side of equation (1) must equal the right side of equation (2). So

$$49 - x^{2} = 81 - 9x^{2}$$
  
$$-x^{2} + 9x^{2} = 81 - 49$$
  
$$8x^{2} = 32$$
  
$$x^{2} = 4$$
  
$$x = 2, \quad x > 0$$

 $\therefore QR = QN + NM + MR = x + x + 2x = 4x = 8 \text{ units.}$ 

A solution involving trigonometry and a system of equations is presented on the next page.



# Problem

In  $\triangle PQR$ , PQ = 7, PR = 9 and median PM = 7. Determine the length of QR.

### Solution 2

This solution is presented for students who have done some trigonometry and know the law of cosines.

Since PM is a median, QM = MR = x. Then QR = 2x.

Using the law of cosines in  $\triangle PQM$ ,

$$PM^{2} = PQ^{2} + QM^{2} - 2(PQ)(QM)\cos(Q)$$

$$7^{2} = 7^{2} + x^{2} - 2(7)(x)\cos(Q)$$

$$49 = 49 + x^{2} - 14x\cos(Q)$$

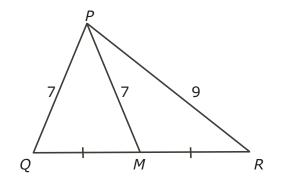
$$14x\cos(Q) = x^{2}$$
(1)

Using the law of cosines in  $\triangle PQR$ ,

$$PR^{2} = PQ^{2} + QR^{2} - 2(PQ)(QR)\cos(Q)$$
  

$$9^{2} = 7^{2} + (2x)^{2} - 2(7)(2x)\cos(Q)$$
  

$$81 = 49 + 4x^{2} - 28x\cos(Q)$$
  


$$28x\cos(Q) = 4x^{2} - 32$$
 (2)

Using elimination to solve for  $x^2$ ,

(1) × 2 
$$28x\cos(Q) = 2x^{2}$$
  
(2)  $28x\cos(Q) = 4x^{2} - 32$   
Subtracting  $0 = -2x^{2} + 32$   
 $2x^{2} = 32$   
 $x^{2} = 16$   
 $x = 4, \quad x > 0$   
 $QR = 2x = 8$ 

 $\therefore$  the length of QR is 8 units.



