Problem of the Week
 Grade 9 and 10

It's a Cube
 Solution

Problem

Q is the point of intersection of the diagonals of one face of a cube whose edges have length 2 cm . Determine the length of $Q R$.

Solution

Label the corners S and T as shown.
The faces of a cube are squares. The diagonals of a square right bisect each other. It follows that $P Q=Q T=\frac{1}{2} P T$. Since the face is a square, $\angle P S T=90^{\circ}$ and $\triangle P S T$ is right angled. Using the Pythagorean Theorem, $P T^{2}=P S^{2}+S T^{2}=2^{2}+2^{2}=8$ and $P T=\sqrt{8}$. Then $P Q=\frac{1}{2} P T=\frac{\sqrt{8}}{2}$.

Because of the 3-dimensional nature of the problem it may not be obvious to all that $\angle R P Q=90^{\circ}$. To help visualize this, note that $\angle R P S=90^{\circ}$ because the face of the cube is a square. Rotate $P S$ counterclockwise about point P on the side face of the cube so that the image of $P S$ lies along $P Q$. The corner angle will not change as a result of the rotation so $\angle R P Q=\angle R P S=90^{\circ}$.

We can now use the Pythagorean Theorem in $\triangle R P Q$ to find the length $R Q$.

$$
R Q^{2}=R P^{2}+P Q^{2}=2^{2}+\left(\frac{\sqrt{8}}{2}\right)^{2}=4+\frac{8}{4}=4+2=6 \text { and } R Q=\sqrt{6} \mathrm{~cm} .
$$

\therefore the length of $R Q$ is $\sqrt{6} \mathrm{~cm}$.

A couple of notes are in order at this point.
First, although the mathematics required to solve this problem was fairly straight forward some students would have found it difficult because of the three dimensional nature of the problem.
Second, we could have simplified $P Q=\frac{1}{2} P T=\frac{\sqrt{8}}{2}$ to $\sqrt{2}$ as follows:

$$
\frac{\sqrt{8}}{2}=\frac{\sqrt{4 \times 2}}{2}=\frac{\sqrt{4} \times \sqrt{2}}{2}=\frac{2 \sqrt{2}}{2}=\sqrt{2} .
$$

Often simplifying radicals is not a part of the curriculum at the grade 9 or 10 level. The calculation of $R Q$ would have been simpler using $P T=\sqrt{2}$.

