Problem of the Week Grade 9 and 10
 Traversing the Triangle
 Solution

Problem

A median is a line segment drawn from the vertex of a triangle to the midpoint of the opposite side. A triangle has an area of $72 \mathrm{~cm}^{2}$. The length of one side is 12 cm and the length of the median to this side is 13 cm . Determine the length of the other two sides of the triangle.

Solution

Start with a diagram to represent the problem.

Let $A D$ be the 12 cm side and $E C$ be the 13 cm median drawn to that side. Draw the altitude from E to side $A D$ meeting it at B. Let $E B$ be h.
Since $E C$ is a median, $A C=C D=\frac{1}{2}(A D)=\frac{1}{2}(12)=6 \mathrm{~cm}$.
Let $B C$, the distance along $A D$ from the altitude to the median, be x.
Then $A B=6-x$.
The area of the triangle is $72 \mathrm{~cm}^{2}$ so $\frac{A D \times E B}{2}=72$. Then $\frac{12 h}{2}=72$ and $h=12 \mathrm{~cm}$ follows.
$\triangle E B C$ is right angled so, using Pythagoras' Theorem, $x^{2}=13^{2}-h^{2}=13^{2}-12^{2}=169-144=25$ and $x=5 \mathrm{~cm}(x>0)$.
Then $B D=B C+C D=x+6=11 \mathrm{~cm}$ and $A B=6-x=1 \mathrm{~cm}$.
$\triangle E A B$ is right angled so, using Pythagoras' Theorem, $E A^{2}=E B^{2}+A B^{2}=12^{2}+1^{2}=145$
and $E A=\sqrt{145} \mathrm{~cm} .(E A>0)$
$\triangle E B D$ is right angled so, using Pythagoras' Theorem, $E D^{2}=E B^{2}+B D^{2}=12^{2}+11^{2}=144+121=265$ and $E D=\sqrt{265} \mathrm{~cm}(E D>0)$.
Therefore the lengths of the other two sides are $\sqrt{145} \mathrm{~cm}$ and $\sqrt{265} \mathrm{~cm}$. These lengths are approximately 12.0 cm and 16.3 cm .

