Problem of the Week Grade 9 and 10

A Shady Region Solution

Problem

The shaded region on the diagram is bounded by the lines whose equations are 5x + 2y = 30, x + 2y = 22, x = 0, and y = 0. Determine the area of the shaded region.

Solution

On the diagram, l_1 represents the line 5x + 2y = 30 that crosses the x-axis at point R. l_2 represents the line x + 2y = 22 which crosses the y-axis at point Q.

Let P represent the point of intersection of l_1 and l_2 . Then h is the horizontal distance from the y-axis to P and k is the vertical distance from the x-axis to P. Let O represent the origin.

To find the x-intercept of l_1 let y = 0 in 5x + 2y = 30. Therefore the x-intercept is 6 and the coordinates of R are (6, 0).

To find the y-intercept of l_2 let x = 0 in x + 2y = 22. Therefore the y-intercept is 11 and the coordinates of Q are (0, 11).

To find the intersection of l_1 and l_2 , we can use elimination.

l_1	5x + 2y	=	30
l_2	x + 2y	=	22
Subtracting, we obtain	4x	=	8
	$\therefore x$	=	2

Substituting x = 2 in l_1 , 10 + 2y = 30 and y = 10. The coordinates of P, the point of intersection, are (2, 10). Therefore, h = 2 and k = 10. To find the shaded area:

Area
$$PQOR$$
 = Area $\triangle PQO$ + Area $\triangle POR$
= $\frac{1}{2}h \times OQ$ + $\frac{1}{2}k \times OR$
= $\frac{1}{2}(2)(11)$ + $\frac{1}{2}(10)(6)$
= $11 + 30$
= 41

Therefore the shaded area is 41 units^2 .

